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Abstract—Decentralized federated learning (DFL) has gained popularity for training machine learning models on massive data in edge
computing, as it avoids the potential bottleneck of conventional parameter server architectures. However, the existing DFL solutions
typically use deterministic topologies that struggle with both system heterogeneity and non-IID local data, resulting in high bandwidth
costs and slow convergence rates. In this paper, we propose a novel mechanism called Communication-efficient Decentralized
Federated Learning (CEDFL) to accelerate model training. In CEDFL, each worker will communicate with each of its neighbors (i.e.,
model exchange) according to a certain probability at each epoch, so as to reduce bandwidth consumption. To this end, we then
propose an efficient algorithm to adaptively determine the optimal probability for each worker pair according to real-time system
situations (e.g., data distribution and bandwidth resource). Our proposed mechanism has been extensively tested on classical models
and datasets, and the results demonstrate its high effectiveness. CEDFL has been shown to reduce completion time for model training
by approximately 55% and improve test accuracy by 11% under the bandwidth constraint, compared to state-of-the-art solutions.

Index Terms—Decentralized Federated Learning, Edge Computing, Non-IID data, Probabilistic Communication.

✦

1 INTRODUCTION

With the rise of the Internet of Things (IoT), a significant
amount of data is being generated every day by intelligent devices
such as mobile phones and wearable devices [1]. As the storage
and computation capabilities of these devices continue to increase,
the concept of edge computing has emerged, allowing for data to
be stored locally while computation functions are pushed to the
network edge [2]. This development has also led to the application
of federated learning (FL), which facilitates distributed machine
learning at the network edge [3], [4].

A typical FL system, such as Favor [5] and R2SP [6], requires
a logically centralized parameter server (PS) to coordinate the
large federation of the participating workers (e.g., various devices
or edge nodes), as shown in the left plot of Fig. 1. At the beginning
of model training, the PS first sends the fresh global model to
workers. Then, the workers train local models over their own
datasets and send the model updates (e.g., gradients or parameters)
to the parameter server for synchronization. Subsequently, these
model updates will be aggregated to derive the latest global model
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Fig. 1: Illustration of the two different frameworks for federated
learning. Left: centralized FL; right: decentralized FL.

on the parameter server. However, with more and more workers
participating in the federated training, the PS may become the
system bottleneck due to the frequent communication between
PS and a large number of workers, leading to the risk of single-
point failure, network congestion and non-ideal convergence rate.
For example, as the size of VGG16 for the ImageNet dataset
reaches 512MB [7], FL requires to consume more than 50GB of
bandwidth in one global round if there are hundreds of workers,
bringing an enormous traffic workload to the PS. Moreover, the
transmission of users’ private models to the PS also gives rise to
privacy concerns, particularly in edge computing scenarios such as
mobile phones or security monitoring, as the PS may be vulnerable
to manipulation by hackers.

To address the aforementioned risks, several decentralized
model training methods have been proposed, such as decentralized
federated learning (DFL). These methods coordinate workers to
establish a peer-to-peer (P2P) communication network, as illus-
trated in the right plot of Fig. 1. Each worker trains a local model
on its own dataset and aggregates models from its neighbors using
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TABLE 1: The advantages and disadvantages of the previous schemes
and ours.

Schemes Non-IID Limited System
Data Bandwidth Heterogeneity

BAT [22] ✓ × ✓
Ring [23] × ✓ ×

NetMax [12] × ✓ ✓
Ours ✓ ✓ ✓

the P2P setting. By avoiding the need to transmit local models
from workers to the PS, these methods eliminate the potential for
single-point failure or network congestion on the PS, which in turn
accelerates the training process. [8]. Without exposing models to
the PS, the users’ privacy can also be efficiently protected [9].

With the above advantages, decentralized federated learning
(DFL) with P2P communication has been extensively studied in
the pieces of literature [10], [11], [12]. However, three critical
challenges make it difficult to perform efficient model training. 1)
Non-IID Local Data: DFL relies on stochastic gradient descent
(SGD) [13], which is widely used in training deep networks due to
its good empirical performance. When training over independent
and identically distributed (IID) data, the stochastic gradient
provides an unbiased estimate of the full gradients [14]. However,
in practice, it is unrealistic to assume that the local data on each
edge device is always IID. For example, in a patient monitoring
scenario [15], different patients’ data often exhibit a high level of
heterogeneity due to diverse human biological features, physical
environments, and even sensor biases [16]. When training over
non-IID data, where each worker trains only on a single class of
data, the accuracy of federated learning can be reduced by ap-
proximately 55% [17]. 2) Limited Communication Bandwidth:
Different from the datacenters with sufficient communication
resources, the bandwidth between the workers is always limited
in edge computing [18]. For example, the bandwidth available
within typical WANs is usually limited to 5∼25Mb/s [19], which
is significantly less than that available within datacenters (e.g.,
over 10Gb/s [20]). As the size of VGG16 for the ImageNet dataset
reaches 512MB [7], the network may still easily get congested
because of the frequent model transmission. 3) System Hetero-
geneity: The link speeds or network resources (e.g., bandwidth
budgets) between the workers are significantly different, leading to
the system heterogeneity [21]. For instance, the bandwidth budgets
of the workers in the network always vary because of different
charging rules made by the internet service providers (ISPs) and
personalized choice of the users [12].

A natural solution of decentralized federated learning is to per-
form model training on a deterministic topology. Specifically, in
order to achieve similar training performance with the centralized
FL on non-IID data, each worker directly or indirectly exchanges
models with all other workers in the logically fully-connected
topology (e.g., grid [24], referred to as the BAT scheme), resulting
in high bandwidth cost [25]. To this end, some studies propose
the communication-efficient schemes (e.g., Ring-Allreduce [11],
[26], referred to as the Ring scheme) which perform fewer model
exchanges among the workers for decentralized federated learning.
In this solution, each worker only communicates with its two

neighbors in the network to form a logically ring topology.
However, the training performance of these schemes is usually
worse than that of BAT (e.g., lower test accuracy or slower
convergence rate) because of neglecting the system heterogeneity
and less communication among the workers, especially under the
non-IID setting.

Different from the above solutions, we adopt the probabilistic
topology in which the communications among the workers can
be dynamically adapted according to the network conditions
(e.g., bandwidth constraints and different link speeds). The most
related work to our paper is a decentralized federated learning
approach, namely NetMax [12], that enables workers to commu-
nicate preferably through high-speed links to significantly speed
up the training process. Specifically, in each training epoch,
the fastest link between any two workers will be allocated the
largest probability. However, this solution only chooses one link
between two workers while ignoring the features of non-IID
data, leading to an enormous number of training epochs until
model convergence under non-IID setting, which will be validated
through experiments in Section 4. We summarize the advantages
and disadvantages of the previous solutions in Table 1. We observe
that none of the aforementioned works can fully address the three
critical challenges in DFL.

To accommodate bandwidth constraints, system heterogeneity
and non-IID data, we propose a communication-efficient decen-
tralized federated learning (CEDFL) mechanism for edge com-
puting. CEDFL adopts the probabilistic communication between
the workers in the network, which will significantly reduce the
bandwidth cost without training performance degradation. Specif-
ically, in CEDFL, the coordinator will assign a proper probability
to each link, also called communication policy, according to the
difference of bandwidth budgets and data distributions among
workers, so that two connected workers will exchange their local
models with this probability at each training epoch. As a result,
our proposed mechanism can effectively improve the training
performance and accelerate the training process of DFL over non-
IID data under bandwidth constraints and system heterogeneity.
The main contributions of this paper are summarized as follows:

• We design a decentralized federated learning mechanism,
named CEDFL, that is optimized for communication ef-
ficiency by utilizing probabilistic communication. During
each epoch, two connected workers will exchange their local
models with a suitable probability. Furthermore, we have
conducted a formal proof of CEDFL’s convergence.

• We then propose an efficient algorithm (termed CPG-DFL)
to adaptively determine the optimal probability for each
link in the network, thus reducing the completion time and
optimizing the utilization of bandwidth resources during the
model training.

• The proposed algorithm has demonstrated high effective-
ness through extensive experiments on standard models and
datasets. Notably, when compared to benchmark methods,
CEDFL has been observed to decrease completion time
by approximately 55% and enhance training accuracy by
roughly 11% while operating under bandwidth constraints.
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2 PRELIMINARIES AND PROBLEM FORMULATION

TABLE 2: Key Notations

Symbol Semantics

T the number of training rounds
ϵ the number of local training epochs in a round
M a set of all workers
A a symmetric adjacency matrix
Ni the neighbors set of worker i
Γi the local dataset on worker i
Pt the communication policy in round t
Wt the gossip matrix in round t
Θt the data distribution difference in round t
Zt the communication matrix in round t
pi,j the communication probability of workers i and j

pi
the probability of worker i communicating with one
of its neighbors at any epoch

pmin the smallest value among pi,∀i ∈ [m]
ωi the local model of worker i in round t
F (ω; ξ) the loss value of model ω over mini-batch ξi
f(Ω) the global objective of DFL
Bi the traffic budget for worker i
b the traffic consumption for a model exchange
η the learning rate
ρ the hyper-parameter for model aggregation

2.1 Network Model
An edge computing system comprises a group of workers, such
as IoT devices or small base stations, that collaborate to train
machine learning models using their respective local datasets.
Rather than sharing their original data, each worker communicates
model parameters with its neighbors. Communication between
two workers takes the form of a logistic P2P (or device-to-
device) procession. Note that asynchronous DFL (ADFL) may
be challenging to combine with complementary techniques like
differential privacy [10]. Thus, we mainly perform DFL and train
models in a synchronous manner. The training process of DFL
under the synchronous scheme involves many global rounds (i.e.,
T ) until convergence, each of which includes local model training,
model exchanging, and model aggregation. Note that there may be
one or several local training epochs (i.e., ϵ) in one global round.

The P2P network topology can be represented as an undirected
graph G = (M, E). Here, M = {1, 2, ...,m} represents the
set of workers, and E indicates the links between workers in the
network. The graph can be denoted as a symmetric adjacency
matrix A = {ai,j ∈ {0, 1}, 1 ≤ i, j ≤ m}, where ai,j indicates
if a link exists between worker i and worker j. The neighbors set
of worker i is denoted as Ni. The degree matrix D is defined as a
diagonal matrix, where Di,i = |Ni| =

∑
j∈Ni

ai,j , and Di,j =
0,∀i ̸= j. By combining the adjacency matrix and the degree
matrix, the Laplacian matrix can be obtained as L = D − A.
As per spectral graph theory [27], λ2(L) > 0 if and only if
the topology is connected, where λm indicates the m-th smallest
eigenvalue of matrix L.

A coordinator (e.g., a worker or a cloud server) collects global
information about the model training (e.g., test accuracy) and
network conditions (e.g., network traffic), and determines the com-
munication policy (i.e., the probability of each link) at each round.
It is worth noting that the role of the coordinator in our system
is distinct from that of a parameter server which is responsible
for aggregating local gradients and updating the global model.
The required network information (e.g., traffic consumption) for
probability decisions at the coordinator can be represented by only
several bytes, which is smaller than the model size with hundreds
of millions of bytes or more. Thus, it is reasonable to assume that
the cost for information collection can be ignored [28]. For ease
of expression, we list some important notations in Table 2.

2.2 Decentralized Federated Learning
Each worker i ∈ M possesses a local dataset Γi, where Γi and
Γj , i ̸= j, may have overlapping data points. The distribution
of local data may not necessarily be independent and identically
distributed. To enable collaborative training of a shared machine
learning model through P2P communication, each worker i trains
a local model wi on its own dataset and shares the model
parameters with its neighboring workers without disclosing their
respective training samples to one another directly. Let F (ω; ξ)
represent the loss function of model ω over the mini-batch ξ. The
optimization objective of DFL can be formulated as follows [12]:

min
Ω

f(Ω) =
m∑
i=1

[Eξ∈Γi
[F (ωi; ξ)]+

ρ

2

m∑
j=1

ai,j∥ωi−ωj∥22] (1)

where Ω = {ω1, ω2, · · · , ωm}, and ωi is the local model of
worker i. The weight ρ controls the relative importance of the
model difference between neighboring workers in the objective
function. The Euclidean distance between the local models of
worker i and j is measured by ∥ωi−ωj∥22, where ∥·∥2 represents
the Euclidean or ℓ2 norm of the vectors. Since DFL lacks global
aggregation, the local models of workers are expected to be similar
to each other, i.e., with small consensus distance ∥ω̄−ωi∥ for each
worker i, where ω̄ is the averaged model of all workers [8].

We adopt the decentralized stochastic gradient descent
(DSGD) method [13] to solve the optimization problem in Eq.
(1). Each worker performs the model update by incorporating
the received local model parameters from the neighbor(s) and its
own local gradient information. Specifically, in each global round
t ∈ {1, 2, · · · , T}, worker i first performs local training epochs
for ϵ times via the SGD algorithm:

ωt,k+1
i ← ωt,k

i − η∇F (ωt,k
i , ξt,ki ) t ∈ {1, 2, · · · , ϵ− 1} (2)

where ξt,ki is a mini-batch randomly sampled from the dataset Γi,
and η is learning rate. ωt,k

i represent the local model of worker
i at k-th local epoch of global round t. Then, worker i pulls its
neighbors’ models and aggregates them to update the local model:

ωt+1
i ← ω

t+ 1
2

i − ηρ
∑
j∈Zt

i

1

pti,j
(ω

t+ 1
2

i − ω
t+ 1

2
j ) (3)

where ω
t+ 1

2
i = ωt,ϵ

i . We denote the communication policy (i.e.,
probability matrix) in round t as Pt = {pti,j}1≤i,j≤m, where pi,j
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Algorithm 1 Procedure at the Coordinator

1: Initialize the data distribution difference Θ0 ← [0]m×m, and
the traffic budget B0 ← [Bi]1×m

2: for each global round t ∈ {1, 2, · · · , T} do
3: Send the request to workers for information collection
4: Receive the requested information to update Θt and Bt

5: Determine the communication policy Pt and the parame-
ter ρt by the CPG-DFL algorithm (Section 3.2)

6: while True do
7: Generate a random matrix Q with a different seed
8: Construct communication matrix Zt with Pt and Q
9: Compute the Laplacian matrix of Zt (i.e., Lz)

10: if λ2(Lz) > 0 then
11: Break
12: Send Pt

i, Zt
i and ρt to each worker i

represents the probability of worker i and j exchanging models in
round t. Zt

i (⊂ Ni) is the set of neighbors that engage in model
exchanges with worker i in round t. Notably, the model update
rule in Eq. (3) assigns higher weights to the pulled models from
neighbors with lower communication probabilities, which enables
worker to maintain enough information from these neighbors [12].

2.3 Communication-Efficient DFL

This section introduces the proposed communication-efficient
DFL (CEDFL) mechanism for edge computing. In CEDFL, a
worker communicates (or exchanges model parameters) with each
of its neighbors with a probability, instead of communicating with
all its neighbors as in [22], [24], [29]. Our proposed mechanism is
mainly composed of two parts, including Alg. 1 at the coordinator
and Alg. 2 at the worker.

The Coordinator Side: In order to estimate the network con-
dition and determine the communication policy among workers, a
coordinator periodically collects the differences of data distribu-
tion and traffic budgets of the workers, described in Alg. 1. At the
beginning, the coordinator will initialize the parameters, such as
the matrix of data distribution difference Θ0 = [0], and the traffic
budgets of the workers B (Line 1). In each global round t, the
coordinator first sends an request to the workers for information
collection (Line 3). Upon updating Θ and B, the coordinator
proceeds to calculate the policy Pt and the parameter ρt. This is
achieved through the implementation of the CPG-DFL algorithm,
as detailed in Section 3.2 (Lines 4-5). Through adaptive tuning,
both the policy Pt and parameter ρt are optimized to facilitate
swift convergence of the entire training procedure. Consequently,
the coordinator generates a random matrix Q = {qi,j}1≤i,j≤m

with the uniform distribution to facilitate the construction of com-
munication matrix Zt = {zti,j}1≤i,j≤m, where zi,j ∈ {0, 1}.
Specifically, if qi,j ≤ pi,j , we set zi,j = 0, which means that
worker i and worker j will exchange their models in the upcoming
aggregation epoch, otherwise zi,j = 0. Notably, due to the
bidirectional nature of model exchange, we control that matrices
P, Q, and Z are all symmetric. Finally, the coordinator computes
the Laplacian matrix of the communication matrix Zt, denoted

Algorithm 2 Procedure at Worker i

1: Initialize local model ω0
i , parameter ρ0, and learning rate η

2: Initialize the communication probabilities P0
i = [ 1m ]1×m,

the neighbors set Z0
i = {j|ai,j = 1}, and the vector of data

distribution difference Θi ← [0]1×m

3: for each global round t ∈ {1, 2, · · · , T} do
4: if new policy is received then
5: Update Pt

i, Zt
i and parameter ρt

6: for k ∈ {1, 2, · · · , ϵ} do
7: Sample a random mini-batch ξt,ki from Γi

8: ωt,k+1
i ← ωt,k

i − η∇F (ωt,k
i , ξt,ki )

9: Set ω
t+ 1

2
i ← ωt,ϵ

i

10: Send its model ω
t+ 1

2
i to the neighbors in Zt

i

11: Receive the model ω
t+ 1

2
j from every neighbor j ∈ Zt

i

12: ωt+1
i ← ω

t+ 1
2

i − ηρt
∑

j∈Zt
i

1
pt
i,j
(ω

t+ 1
2

i − ω
t+ 1

2
j )

13: Update the vector Θt+1
i and the traffic budget Bt+1

i

14: Return the final model ωT
i

as Lz , to check its connectivity. The process of constructing
matrix Zt (Lines 7-9) will be repeated with different random
seeds until the topology is connected (i.e., λ2(Lz) > 0). Finally,
the coordinator sends the neighbors set Zt

i = {j|zi,j = 1} and
parameter ρt to each worker i for the following training process
(Line 12).

The Worker Side: Each worker performs model training with
the SGD algorithm on its local data and communicates with its
neighbors according to the policy P. The detailed algorithm is
depicted in Alg. 2. First, the worker i initializes some parameters,
such as local model ω0

i , parameter ρ0, and learning rate η (Lines
1-2). In each global round t, the communication probabilities Pt

i,
the neighbors set Zt

i , and the parameter ρt will be updated if
the worker has received the latest policy from the coordinator
(Lines 4-5). Next, the worker executes the SGD algorithm for ϵ
times to update its model (Lines 6-8). After that, the worker will
exchange models with its neighbors and aggregate the received
models for model update (Lines 10-12). Then, the information
of worker i will be updated, including Θi and Bi. We employ
weight divergence to quantify the disparity in data distributions.
Specifically, in round t, worker i updates its measure of data
distribution divergence with its neighbor j as follows:

θi,j =
∥∥ωt

i − ωt
j

∥∥ / ∥∥ωt
i

∥∥ (4)

where j ∈ Zt
i . Moreover, let b denote the traffic consumption for

model exchanging with a neighbor. The traffic budget of worker i
is updated as Bt+1

i ← Bt
i−b∗|Zt

i |. After T rounds, each worker
i will obtain its final model ωT

i (Line 14).
For a better explanation of CEDFL, we illustrate the model

training based on a randomly constructed basic topology (BAT
scheme), Ring scheme and CEDFL in Fig. 2. Assume that there
are six workers in the network. We train the VGG9 model [30]
over the CIFAR10 dataset [31]. The bandwidth of each link is
the same, and the data distribution among the workers is non-IID.
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Fig. 2: Illustration of proposed CEDFL mechanism. There are six
workers in the network. Left plot: BAT scheme; middle plot: Ring
scheme; right plot: CEDFL.

We conduct two sets of experiments given a target accuracy and
a certain number of model exchanges. Table 3 shows the resource
cost and training performance by the three different schemes. In
BAT, each worker communicates with all its neighbors at each
round. That is, the probability of each link is 1.0. In order to
make the expectation of traffic consumption equal to or even less
than that of Ring, CEDFL assigns the probability of each link as
0.5 in the network, i.e., each worker has a chance of 50% for
communicating with each neighbor at every round. If a random
probability is smaller than 0.5, the link will be selected, otherwise,
it will be discarded, which will be explained in Section 3.2. As
shown in Table 3, given the target accuracy of 60%, the total
number of model exchanges of CEDFL is 958, while that of BAT
and Ring is 1,640 and 4,200, respectively, in the first set of tests. In
other words, CEDFL can reduce the number of model exchanges
(or traffic consumption) by about 41.5% and 77.2% compared with
BAT and Ring, respectively. In the second set of tests, CEDFL can
improve the test accuracy by about 6.5% and 24.9% compared
with BAT and Ring, after 2,000 model exchanges, respectively.
The testing results show that CEDFL with a fixed probability of
0.5 can efficiently improve the test accuracy and reduce traffic
consumption compared with the two benchmarks.

In practice, due to the limited network traffic, heterogeneous
communication and different data distributions among workers,
it is necessary to dynamically adjust the probability of each
link, so as to achieve efficient training. The impact of probabil-
ity assignment is striking on federated training, which will be
introduced in Section 3.1. In CEDFL, the optimal probability
assignment depends on the traffic budgets and differences of
data distributions among the workers (Section 3.2). Thus, our
proposed CEDFL mechanism can efficiently alleviate the training
performance degradation caused by system heterogeneity and non-
IID data under traffic constraints. Besides, CEDFL can be directly
compatible with Differential Privacy (DP) techniques. To protect
the privacy of each worker, DP ensures that the exchanged model
updates or gradients contain carefully calibrated noise, making
it statistically difficult to infer individual contributions while
preserving the global learning utility.

2.4 Convergence Analysis
In this section, we will discuss the convergence analysis of our
CEDFL algorithm and demonstrate that the models on the workers
will eventually converge to the same optima. Prior to providing
formal proof, we will begin by stating some assumptions, as
outlined in [12].

TABLE 3: Resource cost and model accuracy of different schemes.

Schemes
Fixed Target Accuracy Fixed Number of Exchanges

Model Test Model Test
Exchanges Accuracy Exchanges Accuracy

BAT 1640 60.3% 2030 64.3%
Ring 4200 60.4% 2040 45.9%

CEDFL 958 60.1% 2028 70.8%

Assumption 1. (Lipschitzian Gradient) The loss function
F (ω, ξ) and its local gradient ∇F (ω, ξ) are L-Lipschitz:
∥∇F (x)−∇F (y)∥2 ≤ L∥x− y∥2,∀x, y ∈ Rd.

Assumption 2. (Unbiased Local Gradient Estimator) Let ξti
denote the local data sample on worker i at round t. Then, the
local gradient estimator is unbiased as follows:

E
[
∇F

(
ωt
i , ξ

t
i

)]
= ∇F

(
ωt
i

)
. (5)

Assumption 3. (Additive Noise) Each worker i experiences addi-
tive noise πi in its stochastic gradients, resulting from stochastic
sampling of the dataset. This noise has a mean of zero, E[πi] = 0,
and its variance is bounded, such that E[πT

i πi] ≤ φ2.

We first prove that our proposed framework CEDFL can
converge to a small domain if the following assumption holds.

Assumption 4. If µ is a positive number, the loss function Fi

satisfies µ-strong convexity if for any pair of points x and y, the
following inequality holds:

F (y)− F (x) ≥ ⟨∇F (x), y − x⟩+ µ

2
∥y − x∥2. (6)

Remark 1. Assuming that Assumption 1 holds, and using the
properties of convex functions, we can conclude that for any pair
of points x, y ∈ Rd, the following inequality holds:

(∇F (x)−∇F (y))T(x− y)

≥ µL

µ+ L
(x− y)T(x− y)

+
1

µ+ L
(∇F (x)−∇F (y))T(∇F (x)−∇F (y)) (7)

According to Alg. 2, at each global round t, the model update
of each worker can be viewed as two sequential steps. In the first
step, worker i performs the local training epochs for ϵ times using
the SGD algorithm (Lines 6-8 in Alg. 2):

ω
t+ 1

2
i = ωt

i − ηgti (8)
where gti =

∑ϵ
k=1∇F (ωt,k

i ; ξt,ki ). For simplicity, let τ ti,j =
ai,j

pt
i,j

.
In the second step, worker i updates the local model using its
neighbors’ models (Lines 10-12 in Alg. 2):

ωt+1
i = ω

t+ 1
2

i − ηρ
∑
j∈M

τ ti,j(ω
t+ 1

2
i − ω

t+ 1
2

j ))

= ωt
i − ηgti − ηρ

∑
j∈M

τ ti,j(ω
t
i − ηgti − ωt

j + ηgti)

= (1− ηρ
∑
j∈M

τ ti,j)(ω
t
i − ηgti)− ηρ

∑
j∈M

τ ti,j(ω
t
j − ηgtj)

(9)
Let Ωt = [ωt

1, ω
t
2, · · · , ωt

m]T and gt = [gt1, g
t
2, · · · , gtm]T denote

the vectors containing all workers’ models and gradients at round
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t, respectively. Then, Eq. (9) can be rewritten as the following
matrix form:

Ωt+1 = Wt(Ωt − ηgt) (10)

where Wt is an m×m matrix expressed as:
Wt = I + ηρUt (11)

where Ut = {ut
i,j , 1 ≤ i, j ≤ m}. Specifically, ut

i,j = τ ti,j
for any i ̸= j, while ut

i,i = −
∑

j∈M τ ti,j . Thus, the matrix Wt

mainly depends on the communication policy Pt. By applying Eq.
(11), the expectation is derived w.r.t. the matrix Wt as follows:

Yt = E
[
(Wt)TWt

]
= E

[
I + ηρ(Ut)T + ηρUt + η2ρ2(Ut)TUt

]
(12)

= [yti,j ]m×m (13)
where

yti,i= 1− 2ηρ
∑

j∈M τ ti,j

+η2ρ2
[
(
∑

j∈M τ ti,j)
2 +

∑
j∈M(τ ti,j)

2
]
,∀i ∈M

yti,j= 2ηρτ ti,j +
∑

k∈M−{i,j} τ
t
i,kτ

t
j,k

−η2ρ2τ ti,j
∑

k∈M(τ ti,k + τ tj,k), ∀i ̸= j
(14)

We denote the largest and second-largest eigenvalues of the
matrix Yt as α1(Y

t) and α2(Y
t), respectively. If Yt is a doubly

stochastic symmetric matrix, we set αt = α2(Y
t), otherwise we

set αt = α1(Y
t). It should be noted that there is a situation in

which a worker does not communicate with any of its neighbors
in a round, resulting in unconnected communication. However, the
model training can achieve convergence if the undirected graph G
is connected [12]. Then we can derive the following theorem.

Theorem 2. Let ω∗ denote a minimizer of the global loss function
F . Combining the proposed assumptions and the remarks, when
CEDFL is performed in the form of Eq. (10) with the learning rate
0 < η ≤ 2

µ+L and α < 1, we have

E[∥ΩT −w∗∥2] ≤ αT ∥Ω0 −w∗∥2 + α

1− α
η2φ2 (15)

and CEDFL will converge to a small domain after T rounds,
where w∗ = 1(ω∗)T and ∥ · ∥ denotes the spectral norm. The
detail proof is presented in APPENDIX A.

Then, we further conduct theoretical convergence analysis of
CEDFL for non-convex loss functions.

Lemma 3. Let η ≤ 1
4Lϵ . We have the following expression:

Ef(ωt+1) ≤ f(ωt)− ηϵ

4

∥∥∇f(ωt)
∥∥2
2

+
ηL2ϵ

m

m∑
i=1

∥∥ωt − ωt
i

∥∥2
2
+

σ2η2ϵ2L

m
(16)

where ϵ is the local update frequency of the worker. The proof is
presented in APPENDIX B.

Remark 4. Summing up for T rounds, and rearranging the terms
in Eq. (16), we can derive that:

1

T

T∑
t=1

∥∥∇f(ωt)
∥∥2
2
≤ 4 ∗ (f(ω1)− f(ω∗))

ηϵT

+
4L2

mT

T∑
t=1

m∑
i=1

∥∥ωt − ωt
i

∥∥2
2
+

4Lηϵσ2

m
(17)

Lemma 5. Let 27Lη2

(1−α)2 < 1. We have the following formulation:
T∑

t=1

m∑
i=1

E
∥∥ωt − ωt

i

∥∥2
2
≤ 2mη2(σ2 + 3ζ2)T

(1− α)2 − 3η2L2

+
6mη2

(1− α)2 − 3η2L2

T∑
t=1

E
∥∥∇f(ωt)

∥∥2
2

(18)

The proof is presented in APPENDIX C.

Remark 6. Inserting Eq. (18) into Eq. (17), we obtain the
following convergence bound:

1

T

T∑
t=1

∥∥∇f(ωt)
∥∥2
2
≤ 4(f(ω1)−f(ω∗))((1−α)2−3η2L2)

ηϵT ((1−α)2−27η2L2)

+
8L2η2(σ2 + 3ζ2)

(1− α)2−27η2L2
+

(1− α)2 − 3η2L2

(1− α)2−27η2L2

4Lηϵσ2

m
(19)

Accordingly, the communication topology weight matrix W
(reflected by α) has significant impact on the convergence bound
with Eq. (19). With the increasing of topology sparsity (i.e., large
α), the above convergence bound will increase. Thus, the conver-
gence bound is closely related to the communication probability
both under convex and non-convex cases, which will be well
determined by our proposed algorithm in Section 3.

Discussion: NetMax [12] is the method most closely related to
ours, and is also founded on the probabilistic communication tech-
nique. However, the convergence analysis of NetMax is predicated
on the assumption that the loss function is strongly convex. As a
result, it is inapplicable to the DFL training of non-convex models,
such as deep neural networks (DNNs). Moreover, NetMax fails
to take into account the heterogeneous data distribution among
workers, which does not align with the actual circumstances of
edge networks. Different from NetMax, our convergence analysis
does not rely on the strong convexity assumption.

2.5 Problem Formulation

In this section, we give the definition of resource-efficient de-
centralized federated learning with probabilistic communication
(DFL-PC) problem. Given a fixed topology, the traffic con-
sumption of transmitted models will be further reduced through
probabilistic communication between the workers. However, an
identical probability assignment for all links cannot fully utilize
the available bandwidth because of the different bandwidth and
heterogeneous data among workers. Therefore, we formalize DFL-
PC as an optimization problem to determine link probabilities that
enhance DFL training performance under bandwidth constraints.

min
Pt,ρt(t∈[T ])

f(ΩT )

s.t.


αT ≤ ε, ∀ε > 0∑T

t=1

∑m
j=1 p

t
i,jb ≤ Bi, ∀i ∈M

1− pti,j ≤ βθti,jρ, ∀i, j ∈M,∀t ∈ [T ]

pti,j ∈ [0, 1], ∀i, j ∈M,∀t ∈ [T ]

(20)

According to Theorem 2, the first inequality represents that the
models of the workers will converge to a minimal domain near
the optimal model if αT is less than a small positive value ε.
The second set of inequalities ensures that each worker adheres
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to the traffic constraints. The third set of inequalities ensure that
neighbors with greater data distribution discrepancies are assigned
higher communication probabilities, thereby enhancing training
performance with the non-IID data, where β is a pre-defined
hyper-parameter. The fourth set of inequalities specifies the range
of values for the communication probabilities. Our goal is to
minimize the final loss function f(ΩT ).

3 ALGORITHM DESIGN

3.1 Motivation for Algorithm Design

The federated training performance under the IID setting is always
better than that under non-IID setting, such as classification
accuracy [17]. The DFL algorithm [9] favors exchanging models
or gradients between workers that have distinct data distributions
to expedite model training convergence and enhance training
performance. To this end, different probabilities will be assigned
for links in the basic topology. Specifically, the communication
probability pti,j will be larger if the data distribution between
workers i and j is significantly different at round t, i.e., the higher
model exchange probability.

In order to motivate our algorithm design, we give an example
in Fig. 3. We divide all the workers into three groups, in which
the workers in each group have the same data labels, i.e., IID
data, and the workers in different groups have different data
labels, i.e., non-IID data. We adopt the classical neural model
(e.g., VGG9 [30]) and dataset (e.g., CIFAR10 [31]) in our test,
and perform 200 training rounds by default. We observe the test
accuracy performance and the number of model exchanges under
three different communication schemes, including Ring, BAT and
CEDFL. Let the pair PI -PO to denote the probability of intra
(inter) link between the workers in the same (different) group(s) in
CEDFL. For example, CEDFL (PI :0.1-PO:1.0) denotes that the
probabilities for intra and inter links are 0.1 and 1.0, respectively.
The results in Figs. 4-5 show that CEDFL can achieve better
training performance with less resource consumption compared
with the other two benchmarks. For instance, given 200 training
rounds, the test accuracy of CEDFL (0.5-0.5) is very close to that
of BAT, i.e., 69.6% and 70.3%, respectively. However, the number
of model exchanges of BAT is 4,000, while that of CEDFL (0.5-
0.5) is only 2,086. In other words, compared with BAT, CEDFL
can reduce the resource consumption by about 47.9%.

Besides, we test the impact of different probability assign-
ments on the performance of model training, e.g., CEDFL (0.1-
1.0) and CEDFL (0.5-0.5). In Figs. 4-5, the number of model
exchanges by CEDFL (0.5-0.5) and (0.1-1.0) are almost the
same, 2086 and 2158, respectively. However, the test accuracy
of CEDFL (0.5-0.5) is about 69.6%, while that of CEDFL (0.1-
1.0) is increased to 73.4%. The frequent model exchange has little
significance for performance improvement if the data distribution
of the two workers is consistent. Thus, the algorithm will allocate a
smaller probability to reduce traffic consumption. It is challenging
to determine the optimal communication policy to accelerate the
convergence of the model training with less resource cost.
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Fig. 3: Illustration of the CEDFL mechanism. The thick links indicate
the intra communication betwen the workers with the same data
distribution, while the other links indicate the inter communication
between the workers with different data distributions.

3.2 Algorithm Description

In this section, we propose an efficient algorithm for probabil-
ity assignment under resource constraints, considering the data
distributions among workers. Since the search space (e.g., the
numerous optional probabilities for the communication links) of
DFL-PC is very large, it is time-consuming to search for the
optimal solution by the stand method. Intuitively, the worker may
expect to communicate with its neighbors as much as possible
to speed up the training procedure, i.e., max

∑
j∈Ni

pti,j ,∀i, t,
considering the differences of their data distributions. If there are
significant differences of data distribution between two workers,
we will assign a larger communication probability to this link,
i.e., the higher model exchange frequency between two workers,
vice versa. Instead of seeking the optimal solution, we suggest
an efficient approach to discover a practical solution with sub-
optimal performance. Our observation is that given the parameters
(e.g., ρ), we believe that a feasible communication policy P
can minimize the objective loss value in DFL-PC. Therefore,
our primary strategy is to explore a policy P with the smallest
loss value while taking the differences of data distributions and
resource constraints into considerations. In order to reduce the
search space, we explore an alternative problem with some shared
constraints of DFL-PC, which is formulated as:

max
∑T

t=1

∑m
i=1

∑
j∈Ni

pti,j

s.t.


∑T

t=1

∑m
j=1 p

t
i,j · bi ≤ Bi ∀i ∈M

1− pti,j ≤ βθti,jρ, ∀i, j ∈M,∀t ∈ [T ]

pti,j ∈ [0, 1], ∀i, j ∈M,∀t ∈ [T ]

(21)

In order to quickly find the feasible policy, the objective of
Eq. (21) can be rewritten as min

∑T
t=1

∑
i∈M pti,i, which aims

to minimize the probabilities of workers selecting themselves for
communications, i.e., local model training.

Alg. 3 depicts the process of generating the communication
policy for the DFL algorithm, known as CPG-DFL. This policy is
composed of two nested loops, where the first one is responsible
for determining the number of search rounds, denoted by R, while
the second loop sets the number of evaluation rounds, represented
by T̂ , which are initialized at the beginning of the algorithm, and
will be adjusted according to the network conditions. Different



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL., NO., APR. 2025 8

0 50 100 150 200
0

10

20

30

40

50

60

70

80

A
c
c
u

ra
c
y
 (

%
)

Epochs

  CEDFL(0.1-1.0)

  BAT

  CEDFL(0.5-0.5)

  Ring

Fig. 4: Test accuracy un-
der four different communi-
cation schemes.

Ring BAT CEDFL

(0.5-0.5)

CEDFL

(0.1-1.0)

0

5

10

15

20

25

30

35

40

45

N
o

. 
o

f 
M

o
d

e
l 
E

x
c
h

a
n

g
e

s
 (

×
1
0
0
)

Fig. 5: Number of model ex-
changes under four different
communication schemes.

from T , which may reach thousands or even more, T̂ (one or
several epochs) is much less than T . The traffic budgets and
the differences in data distribution among the workers, which are
collected at the coordinator, serve as the inputs of the algorithm
(Line 1). In each search round r ∈ {1, 2, ..., R}, we set ρ as
1

2ηr and call the subfunction SEARCHPOLICY to determine the
policy P (Line 3-5). In the subfunction, the policy matrix P
will be obtained by solving the Nonlinear Programming (NLP)
problem (Line 9). Then, we adjust the obtained communication
policy by setting the probability of link ai,j (i.e., pti,j) to 0 when
the traffic budget of any worker i or j is exhausted or there is no
data distribution difference between worker i and j. To evaluate
the effects of the current policy P and parameter ρ, the DFL will
be performed for T̂ rounds according to policy P and models
Ωt using Algs. 1-2 (Line 12-13). Since the training rounds T̂
is much smaller than the total rounds T , the resource costs for
policy evaluation can be ignored. After T̂ evaluation rounds, the
subfunction returns the matrix P and the loss value f(Ωt+T̂ )
(Line 16). Finally, the policy matrix P with minimum loss value
f(Ωt+T̂ ) will be greedily selected (Line 6-7). A feasible policy
P which can achieve the smallest objective loss value has been
found through CPG-DFL.

It should be noted that some links may not be selected for
several consecutive rounds due to their low probabilities. To ensure
the performance of model training, we set a hard threshold (e.g.,
5). When a link has not been selected for model exchanging
during a threshold number of rounds, the link’s probability will
be multiplied by a coefficient (e.g., 1.5) at each following round.
Once this link has been selected, its probability will be reset to the
original value.

4 PERFORMANCE EVALUATION

4.1 Performance Metrics and Benchmarks

We use the following metrics to evaluate the performance of
CEDFL and the baselines:

• Training loss measures whether an FL algorithm can effec-
tively achieve convergence.

• At the end of each round, we evaluate the global model on
the test dataset and record the test accuracy.

• Bandwidth consumption quantifies the communication cost
of training, and it is calculated as the total size of the model
transmitted through the network during model aggregation.

Algorithm 3 Communication Policy Generation (CPG) for DFL
1: Initialize learning rate η, search rounds R, evaluation rounds

T̂ , remaining traffic budgets Bt = {Bt
1, ..., B

t
m}, differences

of data distribution Θt

2: function POLICYGENERATION(η,R, T̂ ,Bt,Θt)
3: for r ∈ {1, 2, ..., R} do
4: ρ← 1

2ηr

5: (P, f(Ωt+T̂ ))← SEARCHPOLICY(η, ρ, T̂ ,Bt,Θt)
6: Find the item (P, ρ) with the minimum loss f(Ωt+T̂ )
7: Return the probabilities matrix P and parameter ρ
8: function SEARCHPOLICY(η, ρ, T̂ ,Bt,Θt)
9: Solve NLP problem in (21) to obtain the policy P

10: if min{Bt
i , B

t
j} ≤ 0 or θti,j = 0(∀i, j ∈M) then

11: pti,j = 0

12: for k ∈ {1, 2, ..., T̂} do
13: Perform DFL training with Ωt by Algs. 1-2
14: Compute the loss value f(Ωt+T̂ ) in Eq. (1)
15: Update the traffic budget Bt

16: Return the matrix P and the loss value f(ω)

• Completion time measures the time taken for training to
terminate, which reflects the training speed.

We adopt three typical FL schemes, i.e., Ring [9], BAT [29]
and NetMax [12], as benchmarks for performance comparison.
Since the ring topology is very sparse and communication-
efficient, it has been widely adopted for decentralized model
training [9]. In the BAT scheme [29], each worker exchanges
models with all its neighbors, which can improve training perfor-
mance after model aggregation but may consume more resources.
In NetMax [12], the high-speed link will be selected with a
higher probability for communications among the workers. We
implement the benchmarks and our proposed algorithm on a fixed
P2P network topology [12].

4.2 Models and Datasets

To perform the image classification tasks, we select two well-
known deep learning models, VGG9 [30] and ResNet9 [32], which
have different structures and parameters. For optimization, we
utilized the SGD optimizer with a momentum of 0.9. The learning
rates for VGG9 and ResNet9 were initialized to 0.05 and 0.1,
respectively, and their learning rates decayed correspondingly at
rates of 0.98 and 0.99 [33]. We conduct all experiments using a
batch size of 64 and by default set the number of local updates in
each round to 1 for both models.

To evaluate our proposed algorithm, we adopt two classical
datasets, namely CIFAR10 (referred to as C10) and CIFAR100
(referred to as C100) [31], during the training process. C10
contains 60,000 32×32 color images labeled in 10 classes, with
50,000 samples for training and 10,000 for testing. On the other
hand, C100 has the same total number of image samples as C10
but is more challenging to train models for classification as it
consists of 100 classes. Specifically, we trained VGG9 on C10
and ResNet9 on C100.



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL., NO., APR. 2025 9

TABLE 4: Test accuracy of different models trained with BAT, Ring,
NetMax and CEDFL under different data settings.

Schemes VGG9 over CIFAR10 ResNet9 over CIFAR100
IID non-IID IID non-IID

BAT 78.3% 72.6% 52.7% 46.1%
Ring 72.4% 67.2% 48.3% 41.5%

NetMax 77.8% 68.4% 50.6% 42.4%
CEDFL 83.6% 77.4% 59.6% 54.8%

4.3 Simulation Evaluation
4.3.1 Evaluation Settings
We perform the simulations using an AMAX deep learning
workstation, which is equipped with an Intel(R) Core(TM) i9-
10900X CPU, 4 NVIDIA GeForce RTX 2080Ti GPUs, and 256
GB RAM. To simulate a decentralized federated learning edge
computing system, we utilize 30 workers, with each implemented
as a process in the system, along with a coordinator responsible
for recording training performance and adjusting the probability
of each link in the network. The PyTorch1 framework is used for
model training on each worker, and the communication between
workers is established using the socket library in Python.

System Configuration. To simulate communication in our
decentralized federated learning system, we consider a scenario
where each worker communicates with its neighbors through
either LANs or WANs. To reflect the heterogeneity and dynamics
of P2P networks in our simulations, we allow the inbound band-
width of each worker to fluctuate between 1Mb/s and 20Mb/s.
Considering that the outbound bandwidth in typical WANs is
usually smaller than the inbound bandwidth [17], we configure
it to fluctuate between 0.5Mb/s and 10Mb/s.

In terms of computation, we conduct extensive tests on several
commercial devices (e.g., laptops, TX22) with background appli-
cations. We measure the running time of a single local update
(with a batch size of 32) for VGG9 on C10 to vary between 0.05s
and 0.15s, while that for ResNet9 on C100 varies between 0.15s
and 0.25s [33]. Based on these measurements, we dynamically
and randomly assign running time within the ranges for different
workers while conducting local updates on different learning tasks.

4.3.2 Simulation Results
We conduct three sets of simulations to validate the effectiveness
of our proposed approach, and the results of the simulations are
presented below:

IID vs. Non-IID: Table 4 presents the test accuracy perfor-
mance of two models trained separately on IID and non-IID local
data using BAT, Ring, NetMax, and CEDFL, with a fixed number
of model exchanges (e.g., 3,000). Our focus is on comparing the
four schemes, rather than achieving state-of-the-art performances.
From Table 4, we observe that models trained with all schemes
perform better under IID settings than under non-IID settings.
Additionally, CEDFL outperforms the other three benchmarks by
training for more rounds, which enhances the performance of

1https://pytorch.org/
2https://www.nvidia.com/en-us/autonomous-machines/embedded-

systems/

Fig. 6: Training performance of loss and accuracy with VGG9
trained over CIFAR10.
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federated training. For instance, when training ResNet9 on C100
under non-IID settings, the accuracy of CEDFL is approximately
54.8%, compared to 41.5%, 46.1%, and 42.4% achieved by Ring,
BAT, and NetMax, respectively. In other words, CEDFL can
improve accuracy by about 13.3%, 8.7%, and 12.4% over the three
benchmarks, respectively.

Convergence Performance: In the second set of simulations,
we evaluate the training performance of four schemes under the
non-IID setting, with a fixed accuracy requirement (e.g., 75%).
CEDFL effectively reduces the impact of non-IID issues without
performing unnecessary model exchanges among workers with
similar data distribution, thereby accelerating the model training
process. As depicted in Fig. 6, the required number of model
exchanges for CEDFL is lower than that of the other three
benchmarks. For a training accuracy of 75%, CEDFL requires
372 model exchanges, while BAT, Ring, and NetMax require
547, 865, and 622, respectively. In other words, CEDFL can
reduce the required number of model exchanges by approximately
31.9%, 56.9%, and 44.2% compared to BAT, Ring, and NetMax,
respectively.

Resource Consumption: We conduct tests on the resource
consumption of four different schemes, all with a fixed accuracy
requirement of 75%. Specifically, during the model training pro-
cess on simulated network topologies, the worker in CEDFL per-
forms local updates without any performance degradation instead
of exchanging models with its neighbors. Our findings, presented
in Figs. 7-8, demonstrate that the bandwidth consumption and
completion time of model training with CEDFL are significantly
lower than those of the other three benchmarks. For example,
the bandwidth consumption of C100 trained with CEDFL is
approximately 1.5GB, which is 42.3%, 60.5%, and 48.2% lower
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Fig. 9: The test-bed platform.
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Fig. 10: Test accuracy with bandwidth and completion time constraints
(ResNet9 trained over CIFAR100) in Test-bed.

than Ring, BAT, and NetMax, respectively, whose bandwidth
consumption is around 2.6GB, 3.8GB, and 2.9GB, respectively.
Furthermore, the Ring scheme requires more rounds to achieve
the same test accuracy, resulting in a longer completion time.
For example, VGG9 trained over C10 requires approximately
30.4%, 50.9%, and 17.3% less completion time with CEDFL
compared to BAT, Ring, and NetMax, respectively. Therefore, our
proposed CEDFL mechanism effectively reduces the resource cost
of federated training.

4.4 Test-bed Evaluation
4.4.1 Implementation on the Platform
We carry out experiments on a real test-bed environment con-
sisting of two main components: a deep learning workstation
with four NVIDIA Titan RTX GPUs and 30 devices, comprising
15 NVIDIA Jetson TX2 and 15 NVIDIA Jetson Xavier NX.
The workstation acts as the coordinator, responsible for making
probability assignments and estimating the network condition.
To simulate a real-world edge computing environment, we place
the devices at different locations at least 2,000 meters apart and
allowed them to communicate through a link with a bandwidth of
approximately 50Mbps. Additionally, we logically connect these
devices through the torch.distributed package. As the transmission
delay between the devices and servers is significantly shorter in
practical scenarios, we deploy the devices at various locations
in a laboratory of approximately 400m2 and enable them to
communicate through high-speed 5GHz WiFi.

Data Distribution on Workers The performance of model
training is significantly influenced by the different categories of
data distribution, namely IID and non-IID. In our experiments,
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VGG9 over CIFAR10; right: ResNet9 over CIFAR100.

we examine the impact of data distributions on model training
using five different cases, including IID data and four levels of
non-IID data. For C10, we assign each worker a unique class in
10 classes, with p% (p = 10, 20, 40, 60 and 80) of the samples
belonging to that class, while the remaining samples of each class
were partitioned uniformly to other workers. It is worth noting
that the case of p = 10 corresponds to IID data distribution. We
refer to these five different cases of data distributions as 0.1, 0.2,
0.4, 0.6, and 0.8. For C100, we remove p classes of data samples
from each worker, where p can take on values of 0, 10, 20, 30,
and 40. The samples of one class were distributed uniformly to
only (10 − p/10) workers. Specifically, when p = 0, the data
distribution is uniform. We label the non-IID levels of C100 as 0,
0.1, 0.2, 0.3, and 0.4.

4.4.2 Testing Results

We perform two groups of experiments to evaluate the efficiency
of our proposed algorithm.

Effect of Resource Constraints: The first set of experiments
investigates the impact of resource constraints, such as network
bandwidth and completion time, on the training performance of
ResNet9 over C100. By utilizing model exchanges with proper
probability assignment, CEDFL can effectively reduce both band-
width consumption and completion time. As depicted in Fig.
10, the training performance, measured by test accuracy, of all
schemes exhibits improvement with increasing resource budgets.
Notably, CEDFL achieves better training performance than the
other three benchmarks, with a significant margin. For example,
when the bandwidth budget is 1GB in the left plot, the test
accuracy of CEDFL is around 68.8%, while that of Ring, BAT, and
NetMax is approximately 62.5%, 59.4%, and 63.6%, respectively.
Hence, CEDFL can improve test accuracy by about 6.3%, 9.4%,
and 5.2% compared to Ring, BAT, and NetMax, respectively.

In the right plot of Fig. 10, it can be observed that longer
completion times for model training can significantly enhance the
test accuracy of all schemes. Nonetheless, CEDFL outperforms the
three benchmarks by achieving higher accuracy within the same
completion time. For example, given a completion time of 9,000s,
the accuracy of CEDFL is approximately 72.8%, whereas that of
Ring, BAT, and NetMax is around 59.2%, 66.4%, and 68.6%,
respectively. Consequently, CEDFL can boost the accuracy by
about 13.6%, 6.4%, and 4.2% compared to the three benchmarks,
respectively.
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Fig. 12: Bandwidth consumption and completion time of VGG9 trained
over CIFAR10 under different Non-IID levels in Test-bed.

Different Levels of Non-IID: The second set of experiments
investigates the impact of different non-IID levels on the training
performance of the four schemes with a fixed number (e.g.,
3,000) of model exchanges. Fig. 11 demonstrates that the test
accuracy decreases with the increase of non-IID levels. However,
conducting more model exchanges among workers with different
data distributions can mitigate the non-IID issue. Hence, CEDFL
achieves better performance of federated training than the other
three benchmarks, particularly under a large non-IID level. For
example, when training ResNet9 over C100 with a non-IID level
of 0.4, the test accuracy of CEDFL is about 54.7%, while that
of BAT, Ring, and NetMax is about 51.4%, 46.8%, and 48.5%,
respectively. This indicates that CEDFL can improve the test
accuracy by about 3.3%, 7.9%, and 6.2% compared to BAT, Ring,
and NetMax, respectively.

We also evaluate the bandwidth consumption and completion
time of training VGG9 on C10 dataset with fixed accuracy re-
quirements at different levels of non-IID. As depicted in Fig. 12,
both the bandwidth consumption and completion time of training
increase with the non-IID level. Nevertheless, the increase in
these metrics is comparatively slower in CEDFL than the other
three benchmarks. In fact, CEDFL outperforms the other three
benchmarks in terms of bandwidth consumption and completion
time. For instance, at a non-IID level of 0.6, CEDFL consumes
only 1.76GB of bandwidth, whereas Ring, BAT, and NetMax
require 2.87GB, 3.91GB, and 2.74GB, respectively. Therefore,
CEDFL reduces the bandwidth consumption of model training by
approximately 38.6%, 54.9%, and 35.7% when compared to BAT,
Ring, and NetMax, respectively.

To summarize, CEDFL substantially outperforms the three
benchmarks. Firstly, our CEDFL can significantly alleviate non-
IID issue under resource constraints and system heterogeneity.
Therefore, CEDFL achieves faster convergence speed than three
benchmarks under the non-IID setting. Secondly, CEDFL is su-
perior in training performance (e.g., accuracy) with less resource
cost, i.e., network bandwidth and completion time.

5 RELATED WORKS

The roots of decentralized optimization can be traced back to the
seminal work by [34]. The fundamental principles of decentralized
Machine Learning (ML) and Federated Learning (FL) are also
based on decentralized optimization, which involves the practice
of distributed optimization without any central entity to assist. In

order to grasp the essential features of CEDFL in comparison to
previous algorithms, it is necessary to provide a brief overview of
the frameworks of decentralized optimization and communication-
efficient distributed optimization.

To overcome the potential bottlenecks associated with param-
eter servers, researchers have proposed decentralized ML methods
such as those described by [9], [35]. In these methods, model
parameters are exchanged between any two edge nodes or workers
in the network, rather than being aggregated and broadcast by a
central server. Such methods are known as consensus-based decen-
tralized optimization, which is derived from distributed averaging
algorithms aimed at computing the mean of all data distributed
across multiple workers. In general, a dense topology can lead
to faster convergence in terms of training epochs [36]. However,
this can result in network congestion and long communication
times. Thus, designing a topology or decentralized optimization
framework that achieves fast convergence becomes a critical
challenge. For instance, Wang et al. [37] proposed decomposing
the original topology into disjoint communication subgraphs and
allocating different probabilities for these subgraphs, with each
subgraph being selected during model training according to a
certain probability. This approach can strike a balance between
error and runtime in decentralized Stochastic Gradient Descent
(SGD) by determining the appropriate communication proba-
bilities. However, it mainly relies on link speeds for worker
communication, which can result in poor training performance
under non-IID data settings.

In large scale networks, the cost of communication of-
ten surpasses the computation time, leading to the need for
communication-efficient distributed optimization techniques. To
decrease the bandwidth usage per channel use, reducing the size of
communication payloads is a popular solution that can be achieved
through methods such as gradient quantization [38], model param-
eter quantization [39], and model output exchange via knowledge
distillation for large-sized models [40]. To minimize the number
of channel uses per communication round, model updates can be
restricted only to workers whose computation delays are less than
a target threshold [41] or to those workers whose updates differ
sufficiently from the previous updates in terms of gradients [42]
or model parameters [43]. Quantization reduces communication
cost by using fewer bits to represent each element of the original
parameters (e.g., from float32 to float16). Sparsification is another
common compression method, which transmits a sparse vector that
includes only a subset of the original model parameters. Sebastian
et al. [44] demonstrate that sparsification, when combined with
error compensation, can achieve the same convergence rate as
vanilla SGD. Some methods select only those elements whose
absolute values are above a fixed [45] or adaptive [46] threshold.
Moreover, some works [47], [48] combine both quantization and
sparsification to further decrease the volume of transferred data.
Nevertheless, all of the aforementioned distributed algorithms
necessitate a parameter server to be connected to each worker,
which can result in expensive communication links or may be
infeasible, particularly for workers located beyond the server’s
coverage. In contrast, our primary objective is to create a decen-
tralized optimization framework that guarantees rapid convergence
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without the need for a central entity.
In recent years, several decentralized optimization algorithms

have been proposed, such as decentralized gradient descent and
stochastic gradient descent [9], [49], which aim to achieve fast
convergence without a central entity. These methods often rely on
reducing communication overheads by quantizing model updates
[50] or sparsifying them through top-k or random-k approaches
[44], [51]. Another approach is analog transmissions that allow
each worker to utilize the entire bandwidth and transmit model
updates using analog signals that are superpositioned over-the-
air channels, thus constructing a globally averaged model update
[52]. However, these methods assume sufficient network connec-
tivity, characterized by symmetric and doubly stochastic, column
stochastic connectivity matrix or an extended star network topol-
ogy. Unfortunately, the aforementioned decentralized methods rely
on decentralized gradient descent, which has a slow convergence
rate. Recently, Cao et al. [53] proposed a decentralized asyn-
chronous training framework on heterogeneous workers. It adopts
a probabilistic partial model aggregation scheme to alleviate the
impacts of straggler workers on model convergence. The proposed
framework accelerates model training and eliminates the com-
munication pressure of the central server without increasing the
overall communication volume. However, the framework mainly
focuses on the asynchronous model training, which may lead to
performance degradation compared to the synchronous scheme
under the same number of training rounds [54].

6 CONCLUSION

This paper introduces the CEDFL mechanism, which aims to
tackle the challenges of decentralized federated learning (DFL)
in edge computing, such as non-IID data, system heterogeneity,
and limited bandwidth resources. The proposed approach adopts
communication probabilities to ensure communication efficiency.
To evaluate the performance of CEDFL, both a simulated and
a real DFL environment were built, and extensive experiments
were conducted. The experimental results confirm that CEDFL
effectively improves model accuracy while reducing resource
consumption, including network bandwidth and completion time,
for edge computing.
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APPENDIX A
PROOF OF THEOREM 2

Proof. Combined with Eq. (10), we can bound the expected sum
of squares deviation as follows:
E[∥ΩT+1 −w∗∥2 | ΩT ]

= E[∥WT (ΩT − ηgT )−w∗∥2 | ΩT ]

= E[(ΩT −w∗ − ηgT )T(WT )TWT (ΩT −w∗ − ηgT ) | ΩT ]

≤ αE[(ΩT −w∗ − ηgT )T(ΩT −w∗ − ηgT ) | ΩT ] (22)
where α is the maximum among historical eigenvalues αt

(t ∈ [T ]). Let hi,j denote the duration time of one local epoch
for worker i communicating with worker j. Then, the average
duration time for worker i is

h̄i =
m∑
j=1

hi,j · pi,j · di,j (23)

We use pi to denote the probability of worker i communicating
with one of its neighbors at any epoch, which can be derived as

pi =
1/h̄i∑m

i=1

(
1/h̄i

) (24)

where 1/h̄i is the iterative frequency of worker i. The larger
iterative frequency a worker node has, the higher probability (w.r.t.
pi) it can communicate at a global iteration step. Combining Eqs.
(22) and (24), we have
E[(ΩT −w∗ − ηgT )T(ΩT −w∗ − ηgT )]

= E[∥ΩT −w∗∥2 − 2η(gT )T(ΩT −w∗) + η2(gT )TgT ]

= ∥ΩT −w∗∥2 − 2η
m∑
i=1

pi∇Fi(ω
T
i )

T(ωT
i − ω∗)

+ η2
m∑
i=1

pi∇Fi(ω
T
i )

T∇Fi(ω
T
i ) + η2

m∑
i=1

piE[(πT
i )

TπT
i ] (25)

Since πT
i has zero mean assumption, we drop the terms that are

linear in πT
i .

Let x = ωT
i and y = ω∗. Combining with Remark 1, we have

that
−∇F (ωT

i )
T(ωT

i − ω∗)

= −(∇F (ωT
i )− 0)T(ωT

i − ω∗)

= −(∇F (ωT
i )−∇F (ω∗))T(ωT

i − ω∗)

≤ − µL

µ+ L
(ωT

i − ω∗)T(ωT
i − ω∗)

− 1

µ+ L
(∇F (ωT

i )−∇F (ω∗))T(∇F (ωT
i )−∇F (ω∗))

≤ − µL

µ+ L
(ωT

i − ω∗)T(ωT
i − ω∗)− 1

µ+ L
∇F (ωT

i )
T∇F (ωT

i )

(26)
According to Eq. (26), we can derive that:

− 2η
m∑
i=1

pi∇F (ωT
i )

T(ωT
i − ω∗)

≤ − 2ηµL

µ+ L

m∑
i=1

pi(ω
T
i − ω∗)T(ωT

i − ω∗)

− 2η

µ+ L

m∑
i=1

pi∇F (ωT
i )

T∇F (ωT
i )

≤ − 2ηµL

µ+ L
pmin

M∑
n=1

(ωT
i − ω∗)T(ωT

i − ω∗)

− 2η

µ+ L

m∑
i=1

pi∇F (ωT
i )

T∇F (ωT
i ) (27)

where pmin is the smallest value among pi,∀i ∈ [m]. By utilizing
Eq. (25) and Eq. (27), we can derive that

E[(ΩT −w∗ − ηgT )T(ΩT −w∗ − ηgT ) | ΩT ]

≤ (1− 2ηµL

µ+ L
pmin)∥ΩT −w∗∥2 + η2φ2

+ (η2 − 2η

µ+ L
)

M∑
n=1

pn∇F (ωT
i )

T∇F (ωT
i ) (28)

The last term in Eq. (28) can be droped if 0 < η < 2
µ+L . Then,

we have

E[∥ΩT+1 −w∗∥2 | ΩT ]

≤ αE[(ΩT −w∗ − ηgT )T(ΩT −w∗ − ηgT ) | ΩT ]

≤ α(1− 2ηµL

µ+ L
pmin)∥ΩT −w∗∥2 + αη2φ2

≤ α∥ΩT −w∗∥2 + αη2φ2 (29)
By expanding the recursion, we can express the statement as

E[∥ΩT −w∗∥2] ≤ αT ∥Ω0 −w∗∥2 + 1− αT

1− α
αη2φ2

≤ αT ∥Ω0 −w∗∥2 + α

1− α
η2φ2 (30)

APPENDIX B
PROOF OF LEMMA 3

Proof: For convenience, we first introduce the following
matrix notations:

Ωt := [ωt
1, . . . , ω

t
m],

Ω
t
:= [ωt, . . . , ωt],

∇F (Ωt) := [∇F (ωt
1), . . . ,∇F (ωt

m)],

(31)

where ωt = 1
m

∑m
i=1 ω

t
i and ∇F (Ωt) = 1

m

∑m
i=1∇F (ωt

i).
According to the Lipschitz smoothness property in Assump-

tion 1, we obtain:

Ef(ω(t+1)) = Ef

(
ωt − ηϵ

m

m∑
i=1

∇F (ωt
i)

)

≤ f(ωt)− ϵE

〈
∇f(ωt),

η

m

m∑
i=1

∇F (ωt
i)

〉

+
Lη2ϵ2

2
E

∥∥∥∥∥ 1

m

m∑
i=1

∇F (ωt
i)

∥∥∥∥∥
2

2

. (32)

Then we bound the second term:

− E⟨∇f(ωt),
η

m

m∑
i=1

∇F (ωt
i)⟩
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= E⟨∇f(ωt), η∇f(ωt)− η

m

m∑
i=1

∇F (ωt
i)− η∇f(ωt)⟩

= E⟨∇f(ωt),
η

m

m∑
i=1

∇fi(ωt)− η

m

m∑
i=1

∇F (ωt
i)− η∇f(ωt)⟩

= ⟨∇f(ωt),
η

m

m∑
i=1

(
∇fi(ωt)−∇fi(ωt

i)
)
⟩ − η

∥∥∇f(ωt)
∥∥2
2

=
η

m

m∑
i=1

〈
∇f(ωt),∇fi(ωt)−∇fi(ωt

i)
〉
− η

∥∥∇f(ωt)
∥∥2
2

≤ η

2m

m∑
i=1

∥∥∇fi(ωt)−∇fi(ωt
i)
∥∥2
2
− η

2

∥∥∇f(ωt)
∥∥2
2
, (33)

where the last step comes from the inequality:
2 ⟨a,b⟩ ≤ ∥a∥22 + ∥b∥22,∀a,b ∈ Rd

For the third term, we add and subtract ∇f(ωt) and the sum
of ∇fi(ωt

i):

E

∥∥∥∥∥ 1

m

m∑
i=1

∇F (ωt
i)

∥∥∥∥∥
2

2

≤E
∥∥∥∥∥ 1

m

m∑
i=1

(
∇F (ωt

i)−∇fi(ωt
i)
)∥∥∥∥∥

2

2

+

∥∥∥∥∥ 1

m

m∑
i=1

(
∇fi(ωt

i)−∇fi(ωt) +∇fi(ωt)
)∥∥∥∥∥

2

2

≤ 2

m

m∑
i=1

∥∥∇fi(ωt
i)−∇fi(ωt)

∥∥2
2
+ 2

∥∥∇f(ωt)
∥∥2
2
+

σ2

m
, (34)

where the first step comes from the Assumption 2 and the
following inequality with κ = 1:

∥a+ b∥22 ≤ (1 + κ)∥a∥22 + (1 + κ−1)∥b∥22, κ > 0,

The last step comes from Assumption 3, and we have bounded
gradient variance: E ∥∇F (ωi, ξi)−∇F (ωi)∥22 ≤ σ2,∀ω ∈
Rd,∀i ∈ M. Combining Eq. (32), Eq. (33) and Eq. (34) as well
as Assumption 1, we can obtain:

Ef(ω(t+1)) ≤ f(ωt) +
ηL2ϵ

m
(
1

2
+ ηLϵ)

m∑
i=1

∥∥ωt − ωt
i

∥∥2
2

+ ηϵ(Lηϵ− 1

2
)
∥∥∇f(ωt)

∥∥2
2
+

σ2η2ω2L

m
. (35)

Applying η ≤ 1
4Lϵ in the second and the third terms, we

complete the proof.

APPENDIX C
PROOF OF LEMMA 5

Proof: Based on the updating rule, we have:

Ωt =
t−1∑
s=1

ΩsWt−s +
t−1∑
s=1

η∇F (Ωs)Wt−s−1,

Ω
t
=

t−1∑
s=1

ΩsWt−s 1

m
+

t−1∑
s=1

η∇F (Ωs)Wt−s−1 1

m

=
t−1∑
s=1

ωs +
t−1∑
s=1

η∇F (Ωs). (36)

Thus, we can obtain the following result:
m∑
i=1

E
∥∥ωt − ωt

i

∥∥2
2

=
m∑
i=1

E

∥∥∥∥∥
t−1∑
s=1

(
ΩsWt−sei − ωs

)
−

t−1∑
s=1

η
(
∇F (Ωs)Wt−s−1ei −∇F (Ωs)

)∥∥∥∥∥
2

F

≤2
m∑
i=1

t−1∑
s=1

E
∥∥ΩsWt−sei − ωs

∥∥2
F

+ 2
m∑
i=1

E

∥∥∥∥∥
t−1∑
s=1

η
(
∇F (Ωs)Wt−s−1ei −∇F (Ωs)

)∥∥∥∥∥
2

F

≤2E
t−1∑
s=1

∥∥αt−sΩs
∥∥2
F
+ 2E

(
t−1∑
s=1

ηαt−s−1 ∥∇F (Ωs)∥F

)2

.

(37)
We assume that 1

m

∑m
i=1 ∥∇fi(xi)−∇f(x)∥22 ≤ ζ2,∀x ∈

Rd,∀i ∈ [m]. To bound the term ∥∇F (Ωs)∥2F in Eq. (37), we
first bound ∥∇F (ωt

i)∥
2
2 as follows:

E
∥∥∇F (ωt

i)
∥∥2
2

=E
∥∥∇F (ωt

i)−∇fi(ωt
i) +∇fi(ωt

i)
∥∥2
2

=E
∥∥∇F (ωt

i)−∇fi(ωt
i)
∥∥2
2
+ E

∥∥∇fi(ωt
i)
∥∥2
2

+ 2E
〈
E∇F (ωt

i)−∇fi(ωt
i),∇fi(ωt

i)
〉

=E
∥∥∇F (ωt

i)−∇fi(ωt
i)
∥∥2
2
+ E

∥∥∇fi(ωt
i)
∥∥2
2

≤σ2 + E
∥∥∇(fi(ωt

i)−∇fi(ωt))

+(∇fi(ωt)−∇f(ωt)) +∇f(ωt)
∥∥2
2

≤σ2 + 3E
∥∥∇fi(ωt

i)−∇fi(ωt)
∥∥2
2

+ 3E
∥∥∇fi(ωt)−∇f(ωt)

∥∥2
2
+ 3E

∥∥∇f(ωt)
∥∥2
2

≤σ2 + 3L2E
∥∥ωt − ωt

i

∥∥2
2
+ 3ζ2 + 3E

∥∥∇f(ωt)
∥∥2
2
, (38)

which means

E
∥∥∇F (Ωt)

∥∥2
F
≤

m∑
i=1

∥∥∇F (ωt
i)
∥∥2
2

≤ mσ2 + 3L2
m∑
i=1

E
∥∥ωt − ωt

i

∥∥2
2

+ 3mζ2 + 3mE
∥∥∇f(ωt)

∥∥2
2
. (39)

Inserting Eq. (38) into Eq. (37), applying Lemmas 5 and 6 in
[55], and setting 3L2η2

(1−α)2 < 1, we complete the proof:
T∑

t=1

m∑
i=1

E
∥∥ωt − ωt

i

∥∥2
2
≤ 2mη2(σ2 + 3ζ2)T

(1− α)2 − 3η2L2

+
6mη2

(1− α)2 − 3η2L2

T∑
t=1

E
∥∥∇f(ωt)

∥∥2
2

(40)


