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Handwriting recognition systems have greatly enhanced AIoT applications, especially in human-computer interaction.

Wireless-based methods, favored for their non-invasive nature and ease of deployment, are becoming more common. However,

existing works, which typically depend on the user’s position, often perform poorly in varied writing positions. Additionally,

they do not incorporate user identity information, which could lead to security vulnerabilities by failing to reject unautho-

rized users. To address these issues, this paper introduces RF-Eye, a system that enables contactless, position-independent

handwriting recognition and user identiication without prior training. Its innovative approach uses each Radio-frequency

identiication (RFID) tag as a unique viewpoint for observing hand movements and employs pairs of tags to track directional

changes. Speciically, building upon the signal transmission model and the Fresnel Zone, we propose a novel feature, DCG,

to capture changes in gesture direction and conirm its consistency across diferent positions. Based on DCG, we develop

unique patterns for common handwriting symbols that enhance our recognition algorithm. Moreover, to strengthen the

system security, we link these patterns with distinct handwriting styles through the extraction of iner-grained features,
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thus preventing the misuse of the system by unauthorized users. Extensive experiments demonstrate RF-Eye’s eicacy,

which achieves recognition accuracies of 93.5%, 95.2%, and 95.8% for 26 lowercase letters, 10 digits, and 10 graphic symbols,

respectively, and identifying unauthorized users with 98.6% accuracy.

CCS Concepts: · Human-centered computing→ Ubiquitous and mobile computing systems and tools.

Additional Key Words and Phrases: RFID System, Handwriting Recognition, User Identiication, Position-Independent

1 Introduction

Handwriting recognition technology is a key advancement in human-computer interaction, ofering widespread
beneits. It converts handwritten text to digital format using advanced algorithms, enhancing data entry and
document digitization. In healthcare, it transforms physicians’ notes into electronic records, improving accuracy
and access. In education, it automates the grading of handwritten tests, saving time. For personal devices, it allows
natural input methods like stylus writing, which makes digital systems more user-friendly and adaptable to
various handwriting styles and languages. More importantly, the handwriting motion not only includes content
information but also writing habits and style. Apparently, a person’s writing style is largely invariant and can be
utilized as a distinctive feature for user identiication. Thus, how to efectively combine handwriting recognition
and user identity authentication to accurately recognize legitimate user writing content and deny service to
illegal users is a common concern both in academia and industry.
In practical applications, cameras are the most widely used medium for handwriting recognition due to

their high accuracy [29, 36]. However, they fall short in Non-Line-of-Sight (NLoS) scenarios [40] and raise
concerns about privacy exposure. An alternative, wearable devices like smartwatches [45, 47], require direct
body attachment, which inevitably leads to inconvenience. These shortcomings limit the widespread application
of camera-based and wearable sensor-based handwriting recognition methods.

Table 1. Comparison of diferent contactless gesture recognition systems based on common RF signals.

Approach System Sync Error Penetration Pos-Indep. Train-Free Auth. Acc. (26 letters)

WiFi

WiFine[42] Yes Weak No No No 90.4%

Wi-Wtite[23] Yes Weak No No No 91.7%

WiRITE[51] Yes Weak No No No 92.0%

WiGesture[14] Yes Weak Yes Yes No 91.3%

RFID

GRid[55] No High No No No 89.2%

RF-Siamese[27] No High No No No 91.5%

ReActor[49] No High No No No 91.8%

OursSys No High Yes Yes Yes 93.5%

Unlike camera methods that rely on line of sight and wearable sensor methods that rely on contact, recent
advancements in wireless technologies, notably WiFi [13, 14, 20, 23, 46, 48, 51] and RFID [2, 9ś12, 37, 44],
have enhanced their utility for non-intrusive gesture detection in NLoS (Non-Line-of-Sight) environments.
We summarize the research on contactless gesture recognition using common RF signals, as shown in Tab. 1.
Compared with WiFi signals, RFID signals have three major advantages: less synchronization error, stronger
penetration and lower power consumption. Firstly, RFID employs a single transceiver for both transmission and
reception, which leads to minimal synchronization error in multi-receiver setups. Second, compared to WiFi
signals (e.g., 2.4 GHz and 5 GHz), RFID operates at a lower frequency (920 MHz), providing stronger penetration
and allowing it to function efectively in NLoS (Non-Line-of-Sight) environments. Furthermore, RFID tags are
more lightweight and portable than WiFi nodes, with lower power consumption, making deployment more
convenient. As a result, our system is designed based on RFID technology.

ACM Trans. Sensor Netw.
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Existing RFID-based solutions rely heavily on the precise positions of the hand, which can lead to inconsistent
signal patterns and incorrect gesture identiication if the hand’s location [4] or orientation varies. In contrast, we
propose a position-independent and training-free handwriting recognition system, that can achieve accurate
recognition of handwritten content at any location or orientation without too much computational costs. Fur-
thermore, considering the security, the system should have an authentication function to distinguish the valid
users and illegal users, which can avoid the abuse by illegal users. To achieve this goal, three major challenges
need to be seriously addressed.
How to deine a position-independent feature of handwriting? If a user writes symbols in diferent

positions, the backscattered phases from the tags will difer signiicantly. To ind a position-independent feature,
we irst study the impact of positions on phases and deine a feature DCG to represent the Direction Change of

Gesture. The challenge is how to calculate the DCG from the dynamic phases of multiple tags and validate its
consistency in diferent positions.

To address the irst challenge, we establish the signal transmission model and study a relationship between
hand direction and the tags’ phases. Speciically, we deine a position-independent feature, DCG, which tracks
directional changes and can be derived from the dynamic phases of a pair of tags. We also conduct theoretical
and experimental analyses to validate the consistency of DCG across various positions, as detailed in Sec. 1. This
forms the basis for the entire system.

How to utilize DCG for handwriting recognition? The primary challenge in content recognition involves
representing strokes through signals, as each handwriting symbol has a distinct stroke pattern. This raises the
question of whether these strokes can be efectively captured by the feature DCG, and which speciic features
might be leveraged to classify these strokes. Additionally, using diverse tags provides multiple perspectives of
the same gesture, presenting the challenge of efectively aggregating data from these tags to improve overall
system performance.
To cope with the second challenge, we initially demonstrate the derivation of DCG within RFID systems

and subsequently establish a unique pattern for each handwriting symbol based on DCG. This pattern captures
changes in stroke direction, making it feasible for content recognition since each symbol is characterized by
a unique stroke. Speciically, we divide DCG into subsequences based on varying slope thresholds, calculate
their corresponding slopes and duty cycles, and utilize these as features for identifying handwriting content.
Furthermore, we enhance the accuracy through a voting mechanism that consolidates results from multiple tags,
thereby improving the robustness of our approach.
How to utilize DCG for user identiication? Detecting illegal users is crucial in ensuring system security.

One method of diferentiation is by leveraging the unique writing style of each individual. However, a key
challenge is determining if these distinctive writing styles can be adequately captured by the DCG feature.
Moreover, user identiication, being a more complex task than handwriting recognition, may require more
features. It is essential, therefore, to efectively extract more abstract and ine-grained features that relate to
handwriting styles.
To solve the last challenge, our analysis reveals that DCG patterns encapsulate elements of the user’s

handwriting style. This discovery is corroborated by measuring the distances between diferent users’ patterns.
Consequently, in addition to basic content features, we extract iner-grained features that collectively characterize
a user’s writing style. As these styles manifest in smaller stroke details, our method involves segmenting DCG
into more precise subsequences and using their slopes as features. Additionally, we incorporate ive standard
features to further boost identiication accuracy.

Fig. 1 presents a basic working scenario of RF-Eye. No matter the user conducts handwriting in what position
on the desktop, RF-Eye can accurately recognize the handwriting symbols and identify the user. Finally, we
conclude our contributions with the following three aspects:

ACM Trans. Sensor Netw.
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Fig. 1. System demonstration of RF-Eye. User writes using the hand rather than the finger. No mater the user conducts
handwriting in what position on the desktop, RF-Eye can accurately recognize the handwriting symbols and identify the user.

• As far as we know, by leveraging COTS RFID, RF-Eye stands out as the irst system capable of achieving
position-independent handwriting recognition without the need for prior training. We perceive each tag as
a unique viewpoint for observing hand movements and employ a pair of tags to lock directional changes.
This capability remains consistent across various positions and orientations. Furthermore, this methodology
holds the potential for expansion into other wireless sensing scenarios.

• We realize handwriting recognition and conduct comprehensive experiments. Speciically, RF-Eye reaches
accuracies of 93.5%, 95.2%, and 95.8% for lowercase letters, digits, and graphics, respectively. Experiments
under diferent conditions reveal that performance is independent of position and orientation. For word
recognition, RF-Eye achieves an 89.8% accuracy rate for ive common words, demonstrating its practical
applicability.

• We achieve user identiication beyond content recognition, which is very important for the system’s
intrusion protection. For individual user recognition, we can identify each user’s writing style with 91%
accuracy and ind their corresponding ID. Furthermore, in daily home scenes that only need to distinguish
between legitimate and illegitimate users, our system can achieve a 98.6% recognition accuracy to user
legitimacy, which is satisfactory for intrusion detection.

The remainder of this work is organized as follows. In Sec. 2, we introduce the related work and compare
it with our system. In Sec. 3, we present the architechce of RF-Eye. In Sec. 4, we formulate our problem and
introduce preliminary knowledge on signal relected model and Fresnel Zone. We study the relationship between
phase value and gesture direction, and introduce the DCG to represent the direction change of gesture. Next,
we demonstrate the system design in Sec. 5, which consists of signal preprocessing, DCG pattern construction,
handwriting recognition, and user identiication. Hereafter, comprehensive experiments are conducted to evaluate
the performance of our system as shown in Sec. 6. Finally, we conclude our work in Sec. 7.

2 Related Work

Vision-based Approaches: Cameras [3, 18, 40] are commonly used in handwriting recognition for their accuracy.
Khari et al. [19] employed VGG-net to extract features from RGB and depth images for recognizing static gestures.

ACM Trans. Sensor Netw.
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HOPE-Net [7] extended this by considering both hand and object interactions, which enhanced both 2D and
3D pose estimation capabilities. Despite its maturity in gesture recognition, vision is limited to Line-of-Sight
(LoS) environments, privacy exposure, and often incurs substantial computational overhead due to deep neural
network usage for feature extraction.
Acoustic-based Approaches: Acoustic signals can also be employed to sense human inger movements

without direct contact [16]. UltraGesture [25] utilizes ultrasonics to detect and recognize inger motions based
on Channel Impulse Response (CIR). WANG et al. employed acoustic signals to establish a robust contact-free
gesture recognition system RobuCIR [38]. It can operate efectively under various practical environmental factors,
demonstrating high accuracy and robustness.
mmWave-based Approaches: The exploration of mmWave technology for gesture recognition has shown

promising results. XGest [52] is a cross-label gesture recognition system that leverages a novel knowledge
transfer framework for accurate gesture recognition without additional training. Addressing the challenge of
domain adaptability in real-time recognition, LI et al. developed DI-Gesture [22], a domain-independent system
minimizing the need for extensive data collection and training. Furthermore, mmHSV [21] implemented mmWave
radar to extract hand shape and writing process features for in-air handwritten signature veriication. The
high-resolution and localization capabilities of mmWave radar are advantageous for such applications, though its
widespread use is constrained by the high cost of mmWave devices.

WiFi-based Approaches: WiFi signal analysis has also been employed for activity tracking and gesture
recognition. Winect [31] combined signal separation with joint movement modeling, achieving high accuracy in
detecting complex gestures. This approach leverages the strengths ofWiFi signals in penetrating obstacles, making
it efective in non-line-of-sight scenarios. Meanwhile, GAO et al.[13] developed a mathematical model for signal
time series segmentation and quality-oriented processing, focusing on reducing noise and improving the idelity
of gesture recognition. WiHF[20] utilized a seam-carving algorithm for motion pattern extraction and DNN
for gesture recognition, demonstrating the potential of deep learning in interpreting WiFi signal disturbances.
Additionally, GAO et al. [14] used Channel State Information (CSI) data for hand movement direction and stroke
identiication, showcasing the ine-grained analysis possible with advanced signal processing techniques.

Wearable RFID-basedApproaches:Wearable RFID technology has been applied for bodymovement tracking,
as demonstrated by RF-Kinect [35], which used RFID-tag phase values to accurately detect limb movements. This
method excels in providing real-time feedback, making it suitable for interactive applications. Shangguan et
al. [32] tracked item trajectories using RFID-tagged items, ofering insights into the potential of RFID in retail
and inventory management. However, the practicality of these approaches is limited by the need to attach RFID
tags directly to the human body or objects, which can be cumbersome and intrusive.
Contactless RFID-based Sensing: In contactless applications, Feng et al.[10] combined an attention block

with ResNet for user feature extraction from RFID phase and amplitude data, showcasing the integration of
advanced neural network architectures in RFID systems. Wang et al. [37] used CNN and LSTM frameworks, and
a CPIX method, respectively, for human activity identiication, demonstrating the versatility of machine learning
techniques in interpreting RFID data. These approaches typically rely on phase and amplitude data from multiple
RFID tags but often require an array of tags for efective operation, which can be a limitation in environments
where tag deployment is restricted.

Wireless user Identiication: Wireless signals, including WiFi and RFID, are instrumental in tracking
and motion recognition. WiTL [24], a transfer learning-based contactless authentication system, addresses
the challenges of environmental dynamics and activity dependence by detecting unique human features and
extracting activity features for robust identity recognition, achieving over 93% accuracy. The work in [30] utilized
WiFi for motion detection and user identiication, illustrating the adaptability ofWiFi in various user identiication
scenarios. RF-Identity [10] extracted amplitude and gait patterns from WiFi and RFID signals, respectively, for
person recognition, which highlighted the potential of wireless signals in biometric identiication. Anna et al. [15]

ACM Trans. Sensor Netw.
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proposed Au-Id, a system using RFID phase and RSSI data for user identiication and authentication, presenting a
novel approach in enhancing security measures using everyday wireless signals.

3 System Overview

Fig. 2. System Overview of RF-Eye.

The proposed system RF-Eye consists of four main parts as shown in Fig. 2: Signal Preprocessing (5.1), DCG
Pattern Construction (5.2), Handwriting Recognition (5.3), and User Identiication (5.4), respectively. Speciically, we
process the signal by segmenting it based on a predetermined threshold and applying noise reduction techniques
to eliminate phase jumps and minimize interference. The second part is to get the feature. In particular, we
calculate the position-independent featureDCG by dynamic phase diferentiation and construct the unique pattern
for each handwriting letter. The third part is to get the content. In this part, we irst segment the DCG pattern
and extract their slopes as the features of content. Then, we recognize them by comprehensively aggregating the
results of 4 tags. The last part is to get the writing habits. We analyze writing habits by comparing the styles of
diferent users, determining that these styles are generally consistent across individuals. Beyond content features,
we extract more detailed, ine-grained features that represent individual handwriting styles. These features are
then combined to enhance user identiication accuracy. Validated users are presented with both the content

ACM Trans. Sensor Netw.
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and their ID, while the information of users deemed invalid is added to an illegal user database, improving our
system’s capability to identify unauthorized users.

4 System Model

4.1 Signal Transmission Model

In an RFID system, the hand movement changes the length of the dynamic relection path and causes the signal
phase to change accordingly. For an RFID signal with a central frequency of 920MHz, a 5mm path length change
will cause a phase change of 5.6 degrees. If we can capture the ine-grained phase change, we can thus monitor
the signal path length change and sense the handwriting accordingly.
We elucidate how hand movement impacts RFID signal transmission. When the hand waves, the arm moves

correspondingly. The combined length of the hand and arm exceeds 30 cm, surpassing the half wavelength of
RFID signals, which is 16 cm. This ensures that the RFID signal is relected by the hand and arm instead of passing
through them. Consequently, the relected signal carries information about the hand movement.

Our problem can be formulated as follows: Given an RFID antenna and several tags, the handwriting process
impacts the signal transmission between the antenna and tags, which can be relected in phase and RSSI reported
by the antenna. Our target is to build a deinite relationship between the received signal and the handwriting.

Fig. 3. Reflection Model for RFID system.

As shown in Fig. 3, we use �, � , � , and� to represent the Antenna, Tag, Hand, and Wall, respectively. It
consists of three types of path: direct path �� (� → � → �), static relection path �� (� → � → � → �),
dynamic relection path �� (� → � → � → �). Of course, there should be another two paths,� → � →� → �

and � → � → � → � according to [39, 54] which are equal to �� and �� . To simplify the scenario, we have
omitted this part of the description. Suppose �� , �� , �� as the relected signals go through the path �� , �� , ��
respectively. Then, according to the analysis for RFID signal transmission in Tadar [43], the received signal � at
reader can be denoted as � = �� + �� + �� . Among them, �� and �� are constants since the tag and wall are
static. As a result, � is only impacted by �� . Furthermore, � and �� can be represented as complex exponential
signals �� � � and ���

� �� where � and �� are the magnitude, � and �� are the phase values. Thus, we can derive
the following,

��
� �

= �� + �� + �� �
� �� (1)

ACM Trans. Sensor Netw.
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where � = 10
√
����/1000 is the magnitude and � is the phase values reported by the reader. �� and �� contain

the information of handwriting, which is still unknown yet. These two parameters are crucial for recognizing
handwriting content, and we can calculate them using the diferential method. Speciically, by diferentiating the
signals over adjacent time slots where only hand movement occurs, we can represent the phase diferences. The
details of this method will be further elaborated in Sec. 5.
Last but not least, we explain why not directly analyzing the phase of CW signal transmitted by the reader,

which is much stronger. The reason is from the Tx/Rx isolation of the commercial reader, which only reports the
tags’ phase. The signal from reader’s transmitter or relected from multi-path causes interference when reader’s
receiver receives the backscattered signal from tag. To tackle this problem, the reader uses a directional coupler
to achieve Tx/Rx isolation, which only analyzes and reports the signal from tag.

(a) Fresnel zone model in RFID (b) The angle between hand speed and normal

vectors of two tags � and �

(c) The relationship between hand

direction and � , �

Fig. 4. Illustration of DCG: (a) presents the Fresnel Zone in RFID. (b) represents the angles between hand speed and two
normal vectors. (c) presents the hand direction change.

4.2 Phase change and Frenel zone

When the hand is moving, according to [39, 54], the dynamic phase �� can be represented as,

�� =

4�

�
· �� mod 2� (2)

where �� is the Euclidean distance of the � → � → � → �. Speciically, �� can be expressed as ��→� +��→� +
��→�. Among them, ��→� is a constant since the position of the antenna and the tag is ixed. As a result, ��
will be unchanged if the sum of ��→� and ��→� remains unchanged. That will generate a series of concentric
ellipsoids of alternating strengths named ‘Frenel Zone’ [6], which is presented in Fig. 4(a). It means moving along
the same ellipsoid will not change the phase. In other words, �� is only afected by the displacement component
along the normal directions of the ellipse [17, 28]. Speciically, suppose the hand is moving with speed � at time � ,
and its velocity component along the normal directions of the ellipse is �� . After a short time interval Δ� which
the speed can be seen as unchanged, the efective displacement change Δ�� can be written as �� · Δ� . Therefore,
the phase change Δ�� can be expressed as,

��� =

4�

�
(�� · Δ�) mod 2� (3)

4.3 DCG Definition and Analysis

Deinition of DCG: Suppose a system setup includes one antenna and two tags, �1, �2, positioned in a sensing
area where a user is writing with his hand. The dynamic phases at time � are � �1,� and � �2,� . After a brief time

ACM Trans. Sensor Netw.
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interval Δ� , the phases change to � �+Δ�1,� and � �+Δ�2,� . In this way, we deine DCG as follows,

��� = arctan
��1,�

��2,�
(4)

where Δ�1,� = � �+Δ�1,� − � �1,� , Δ�2,� = � �+Δ�2,� − � �2,� , which are the phase changes of two tags separately. We use

this feature to represent the direction change of the handwriting process.
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Fig. 5. Direction Angles of �1 and �2.

Theoretic analysis of DCG: Now we explain why DCG can represent the direction change of hand from
the theoretical analysis. The key idea of DCG is locking the gesture direction based on the phases of two tags.
Fig. 4(b) shows the relationship between the hand direction and the Fresnel Zone. � and � are the included angles
between hand speed � and the normal vectors �1, �2 of Fresnel Zones for two tags separately.

Now, we demonstrate that the direction angle of �1 and �2 can be considered ixed within our scenario. Firstly,
we posit that if the variation in the direction angle is less than a predeined threshold, then the direction can
be approximated as constant [1, 8, 41]. We set this threshold at 5◦, which is minor relative to the full scale of
360◦Ðamounting to a mere 1.4% change, and thus can be considered negligible. Our objective is to prove that, in
our scenario, the maximum angular variations of �1 and �2 are less than 5◦.

We begin by describing our scenario: Fig. 5a illustrates the deployment of RF-Eye. For simplicity, we represent
their relative positions in two-dimensional coordinates, measured in centimeters. The coordinates for Tag1, Tag2,
and the antenna are respectively (−100, 0), (100, 0), and (0, 282), which places the antenna exactly 300 cm from
each tag, corresponding to the line-of-sight distance. We deine an efective work area bounded by � from −60 to
60, and � from −60 to 60, forming a 120 cm × 120 cm rectangleÐadequate for typical user handwriting. Users
within this area engage in handwriting, with the size of the written characters generally within 30 cm × 30 cm.

Our goal is to search two points within this work area, separated by no more than 30 cm, where the variation
in �1’s direction angle is maximized. Using MATLAB for exhaustive search, we located these two points at
�1 (30, 60) and �2 (60, 60), with a directional angle diference of 4.1◦, which is less than our 5◦ threshold.
Similarly, the maximum change in the direction angle of �2 is also 4.1◦, conirming our assumption is correct.
We also present the variation in the direction angles of �1 and �2 as � traverses the entire working area in
Fig. 5b. It is evident from the curves, which are remarkably lat, that within a 30 cm movement range, the angle

ACM Trans. Sensor Netw.
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variation remains under 5◦. Therefore, by obtaining the values of � and � at each moment, we can depict the
hand directionÐreferring to the direction in which the hand moves while writingÐas illustrated in Fig. 4(c).

Next, we try to calculate the corresponding � by the phase information. The projection ��1 , which of the speed
� onto the normal vector �1, can be written as � cos� . According to Eq. 3, Δ�1,� , i.e., the dynamic phase change of
Tag1, is equal to 4� (� cos� · Δ�)/� mod 2� . Unfortunately, since the hand speed � is unknown, it is impossible
to calculate the � . This is also why we can’t lock the hand direction by only one tag.

Fortunately, we have another tag with its corresponding angle � , which can help us eliminate � . The dynamic
phase change of Tag2, i.e., Δ�2,� , can be written as 4� (� cos � · Δ�)/� mod 2� . The ratio between Δ�1,� and
Δ�2,� can be calculated as follows,

��1,�

��2,�
=

cos�

cos �
(5)

As aforementioned, since the included angle between �1 and �2 can be regarded as unchanged, the sum or
diference of � and � is ixed. Speciically, suppose � + � or � − � as � , the cos� can be represented as cos(� − �)
or cos(� −�) which are equal to each other due to the symmetry. Therefore, the inal form of Eq. 5 can be written
as,

��1,�

��2,�
=

cos(� − �)
cos �

= sin� · tan � + cos�

(6)

where � is a constant. It is easy to see the ratio of phase change is a function of � , which can directly represent
the hand direction change. Finally, to avoid outliers caused by denominators approaching zero[26], we use
arctan(Δ�1,�/Δ�2,� ) as DCG, which has been given in Eq. 4. By the way, when � is close to �/2, the DCG changes
to � , which is the included angle between � and �2.
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(a) DCG of writing straight line
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(b) DCG of writing arc
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(c) DCG of writing right angle

Fig. 6. Verification of DCG.

Experimental veriication of DCG: In this subsection, we conduct some experiments to verify the efective-
ness of DCG. For convenience, three types of basic graphics, including drawing a straight line, arc, and right
angle, are selected for testing. Each graphic is written in three diferent orientations. Then we plot the DCG
as shown in Fig. 6. For writing a straight line, the DCG is also a straight line with a slope of almost zero. It
demonstrates the hand direction is not changed since cos�/cos � is ixed. Notice that the start points of DCG for
the three positions are diferent. This is because the angles � and � are diferent in three orientations. For writing
an arc, the DCG exhibits a gently ascending straight line, suggesting a gradual change in hand direction. For
writing a right angle, the DCG begins stable, then sharply declines, and inally stabilizes, relecting the abrupt
directional change. Overall, these experiments corroborate the DCG’s potential for recognizing handwriting in
diferent positions.

ACM Trans. Sensor Netw.



RF-Eye: Commodity RFID Can Know What You Write and Who You Are Wherever You Are • 11

5 System DESIGN

Our system RF-Eye consists of four main parts. The irst part is the Signal Pre-processing module presented in
subsec. 5.1. To extract the DCG, we irst detect and segment the signal that contains the handwriting process,
and then remove the noise induced by the device, tag, and environment. Then we extract the DCG by phase
diferentiation in the second part DCG Pattern Construction presented in subSec. 5.2. Next, the third part is the
Handwriting Recognition module presented in subSec. 5.3. We construct the pattern of each handwriting letter
and recognize them by aggregating the results of 4 tags. Finally, we introduce the last part User Identiication as
shown in subSec. 5.4. We extract more ine-grained features for the handwriting habits for users and improve the
accuracy by aggregating the results of 4 tags.

(a) Data Preprocessing (b) Dynamic phase change (c) DCG Unwrapping

Fig. 7. Data Processing.

5.1 Signal Pre-processing

Segmentation. RF-Eye continuously receives a large number of signals the whole day, so we should ind the
target signal that contains the handwriting. A common observation is that the phase change is less than 0.05rad
when there is no handwriting in LoS. So we employ a sliding window with a length of 0.5� to detect the phase
change. If max (�ℎ���) − min (�ℎ���) ≥ 0.05��� in the current window, it will be regarded as a handwriting
proposal. Then we shift the window with a step size of 0.5� and repeat this detection. Finally, we merge the
adjacent handwriting proposals to create a complete handwriting process. Fig. 7a shows a segmentation example.
We draw circles in two diferent positions and each handwriting process is segmented exactly. Notice that the
duration of handwriting is usually over 0.5� , the window with a length of 0.5� is enough to cover them. This
method ensures that all possible action proposals can be extracted.
Denoising. After getting the handwriting proposals, we need to remove the noise from them. When we

retrieve the phase readings from the commodity RFID reader, we observe that even though both the tag and
reader are stationary, the phase readings still slightly luctuate in a short time. In addition to the small random
luctuation, the phase readings occasionally sufer from a sudden phase jump of � . For this � phase jump, we
can detect it with phase continuity and remove it. Then we employ a moving average ilter to smooth the phase
variation for further processing. By the way, the antenna gain, tag relection, and human relection also cause
phase shift. [5]. Fortunately, these impacts are eliminated by the signal diferentiation presented in subSec. 5.2.
Overall, the phases � after segmentation and denoising are put into the next module for feature extraction.

5.2 DCG Patern Construction

Δ�� Derivation. In order to calculate the DCG, according to Eq. 4, we should derive the phase Δ�� which
corresponds to the dynamic path with the help of � and ���� reported by the reader. Suppose ��

�
, ��+Δ�

�
are the
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signals at time � , � + Δ� separately, according to Eq. 1, the ratio of them is written as

�
�+Δ�
�

�
�
�

=

�
�+Δ� − (�� + �� )
�
� − (�� + �� )

(7)

Among them, �� + �� could easily obtained by the received phase and ���� when there is no human in the
environment. Next, we represent the �� and � as complex exponential signals, thus the Eq. 7 is equal to

��+Δ�
�

� � �
�+Δ�
�

��
�
� � �

�

�

=

��+Δ�� � �
�+Δ� − (�� + �� )

��� � �
� − (�� + �� )

(8)

The ���� keeps unchanged due to a tiny Δ� , so ��+Δ�
�

= ��
�
. Therefore, the left side of Eq. 8 can be simpliied to

� �Δ�� while the � and � on right side can be acquired from the reader. Finally, Δ�� can be calculated from � �Δ�� .
When there are two tags, the sampling rate of COTS RFID can achieve 200 samples per second for each.

According to the polling mechanism of RFID, there will be two readings corresponding to Tag1 and Tag2
respectively every 5ms, but who comes irst is not certain. To keep the consistency of time, we set Δ� as 10ms.
As a result, DCG will have 100 samples every second, which is enough to present the action direction change.
Fig. 7(b) shows an example of the dynamic phase change of Tag1 and Tag2 in 600 seconds.

(a) DCG of ‘a’ (b) DCG of ‘b’ (c) DCG of ‘c’ (d) DCG of ‘d’

(e) DCG of ‘e’ (f) DCG of ‘f’ (g) DCG of ‘g’ (h) DCG of ‘h’

Fig. 8. DCG of a-h: {+low,-high,+low},{zero,+high,-low},{+low},{+low,zero,-high,zero},{zero,+high},{+low,zero,-high,zero},{+low,-
high,zero,-low},{zero,+high,-low,zero}.

DCG Unwrapping. When we calculate the DCG based on Δ�� according to Eq. 4, there will be a phase jump
of � which causes the discontinuity of DCG [50]. This is related to the period of DCG. We know that DCG =
arctan(sin� · tan � + cos�) according to Eq. 6 where � is constant. It is a periodic function of � with a period
of � . The variation range of � is [−�, �] while the DCG is [−�/2, �/2]. For simplicity, we set � as ��/2, so the
DCG can be represented as � . Therefore, If the DCG reach the maximum value �/2, it will jump to −�/2 if the
direction keep changing. To maintain the continuity of DCG, we add � to the DCG after the � jump. This is
DCG unwrapping presented as Fig. 7c. Finally, we obtain a continuous curve that represents the action direction
change.

As shown in Fig. 8, we depict the DCG patterns of 8 handwriting lowercase letters including ‘a’, ‘b’, ‘c’, ‘d’, ‘e’,
‘f’, ‘g’, and ‘h’ respectively. They demonstrate the direction change of stroke. The stroke changes more sharply,
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the slope of curve is larger. Their diferences are very obvious and we can recognize the handwriting based on
them.

5.3 Handwriting Recognition

(a) Writing ‘a’ and its DCG. (b) Writing triangle and its DCG.

Fig. 9. Two examples of DCG patern

Each handwriting has its ingerprint which can be represented by the slope of DCG. Speciically, if the hand
direction is unchanged over time, e.g. drawing a straight line, the slope is around zero. If the hand direction
changes slowly over time, e.g. drawing a circle, the slope is low. If the hand direction changes sharply, e.g. drawing
an acute angle, the slope is a large constant. Fig. 9a presents the stroke of letter ‘a’ and its DCG pattern. We
segment the DCG into two subsequences according to the slope change: 1→2 represents drawing an ellipse in
which the slope is relatively low, 2→3 represents drawing an arc, which the slope is relatively low. Notably, point
2 serves as a pivot in the stroke, where the hand’s direction shifts abruptly from moving upwards to downwards.
This sudden change results in a sharp decline as the angle rapidly exceeds 90◦. Similarly, Figure 9b illustrates the
stroke of a triangle along with its DCG pattern. The segments 1→2, 2→3, and 3→4 represent three straight lines
with an almost zero slope. At points 2, 3, and 4, there is a sharp change in the direction of the stroke, resulting in
a high slope. Inspired by this relationship, we can extract some features of handwriting.
First of all, we should obtain the slope of DCG, which is the most important feature representing the hand

direction change. Speciically, we select a sliding window with a length of 0.1s, and segment the DCG with a step
of 0.1s. After that, we calculate the mean slope in each window and then get a slope series. Next, we classify
every slope by two thresholds �1 and �2:





���� : 0 ≤ |����� | < �1

��� : �1 ≤ |����� | ≤ �2

ℎ��ℎ : |����� | > �2

(9)

To determine the values of �1 and �2, we regard the average angle change of inishing drawing a circle in
1s as a critical point: if the angle change in 0.1s is greater than 60◦, it can be seen as a high slope. If the angle
change in 0.1s is less than 5◦, it can be seen as a zero slope. So the �1 and �2 can be set as 0.87 and 6.28. After
classifying the slopes, We can ind the turning point of DCG. For example, we can segment the DCG of ‘a’ as
three subsequences in Fig. 9a. Then we calculate the mean slope of the three subsequences and get the slope
feature of ‘a’, i.e. {+low,-high,+low}. Note that in this context, ‘+’ and ‘−’ denote the positive and negative signs of
the slope, respectively. From a physical standpoint, ‘+’ indicates that the stroke direction is counterclockwise,
resulting in a positive DCG slope. Conversely, ‘−’ indicates that the stroke direction is clockwise, leading to a
negative DCG slope. For example, the irst stroke of the letter ‘a’ is a counterclockwise ellipse, hence the slope
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is positive; similarly, the second stroke is a counterclockwise arc, making the slope positive as well. With this
feature, the accuracy of handwriting recognition can reach 78%.

Fig. 10. The four graphics and their DCG paterns

However, we can’t classify between ‘h’ and ‘n’ because both the slope features are {zero,+high,-low}. We should
ind another feature to represent their diference. Fortunately, it is easily seen that the ‘h’ is higher than ‘n’, which
means the duration of DCG subsequence is diferent: the duration of zero in ‘h’ is longer than ‘n’. As a result, we
can use the time ratio of every subsequence as a feature, which represents the duration of each subsequence.
For example, the time ratios of ‘h’ and ‘n’ are {0.5:0.2:0.3} and {0.4:0.2:0.4} respectively, which can classify them
accurately. We also provide the DCG patterns for four basic graphics (rectangle, square, trapezoid, and star) as
illustrated in Fig. 10. The strokes of them are all composed of straight lines, particularly the irst three, which
are quadrilaterals, resulting in very similar DCG patterns. However, since each graphic has unique side length
proportions, we can consider incorporating the proportion of time ratio on each side as an aid in recognition. For
example, for a rectangle with dimensions of 15 cm by 10 cm, the time ratio for handwriting are approximately
0.2, 0.3, 0.3, 0.3, which correspond exactly to the ratios of the DCG segment lengths. In contrast, a square has
equal side lengths, resulting in equal time proportions of 0.25 for each side. With these two features, the accuracy
of handwriting recognition can reach 85%.

Notice that the accuracy is not satisfactory even employing the two-dimensional features, because the result
from only one pair of tags is not accurate sometimes. Therefore, we use multiple pairs of tags and aggregate
their results to improve the performance. Speciically, we deploy 4 tags (tag1∼tag4) as shown in Fig. 13(a), and
calculate the DCG of tag1/tag3, tag1/tag4, tag2/tag3, tag2/tag4. The handwriting letter is recognized by these 4
tags. We conduct a voting mechanism: The inal result must be consistent on at least two pairs of tags. According
to this mechanism, the accuracy could reach 92.2% on 26 handwriting lower letters presented in Fig. 14(a). By the
way, the number of tags is not the more the better. More tags will lead to a low sampling rate. We evaluate this in
Fig. 15(d).
In summary, RF-Eye reaches a high accuracy by extracting two features including slope and time ratio based

on multiple pairs of tags.
We now clarify the novelty of the proposed handwriting recognition method. The system’s innovative approach

leverages each RFID tag as a unique viewpoint for observing hand movements and employs pairs of tags to track
directional changes. These changes are captured through a constructed pattern, designated as DCG, which is
derived from the tags’ phases rather than relying on training. This approach not only eliminates the need for
training but also ensures consistent performance across various positions. Compared to machine learning-based
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methods like DI-Gesture [22], our method requires lower computational costs, ofers superior interpretability,
and exhibits enhanced noise immunity.

(a) Drawing ‘a’ with user A and user B. (b) DCG of user A and user B.
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(c) DTW .

Fig. 11. Illustration of user handwriting habit.

5.4 User Identification

Handwriting, inherently unique to each individual, is a rich source of distinctive patterns and nuances. To delve
into this uniqueness, we initiated an experiment with 30 diverse participants. Their task was to write the lowercase
letter ’a’, a seemingly simple activity, yet one that reveals a plethora of individualized characteristics. In Fig. 11(a),
we present a typical example where User1’s and User2’s handwriting are juxtaposed. The comparison is striking
ś User1’s rendition of ’a’ is slimmer compared to the broader strokes of User2. This contrast is not merely about
the letter’s shape; it extends to the subtle intricacies of handwriting style, such as stroke pressure and curvature,
which are less obvious to the naked eye but critical in distinguishing one person’s handwriting from another’s.
Consistency is another hallmark of individual handwriting, as demonstrated by the similarity in multiple instances
of the same letter penned by a single person. The DCG representations, as seen in Fig. 11(b), ofer a quantitative
validation of these observations, translating the subjective aspects of handwriting into measurable data.

To broaden our understanding, we included a larger sample of participants (eight in total, labeled User1 through
User8) and a wider array of lowercase letters (from ’a’ to ’h’). Each user wrote each letter ten times, creating
a robust dataset for analysis. By employing Dynamic Time Warping (DTW), a technique adept at capturing
temporal variations in time-series data, we were able to quantify the diferences and similarities in handwriting
across various users and instances. The results, presented in Fig. 11(c), indicate a discernible pattern: handwriting
difers signiicantly between individuals, yet remains relatively consistent for an individual across multiple
instances. This inding underscores the potential of handwriting as a biometric for user identiication.
Handwriting styles are biometric characteristics linked to individual habits, inluencing the DCG. However,

DCG is determined solely by handwriting styles and is unafected by factors such as body shape or clothing. This
is because DCG relects the direction of hand movement, which relates only to dynamic objects. For instance, if a
user writes a letter wearing diferent clothes, the initial signal might vary, but the DCG pattern remains consistent.
This stability is due to the static nature of clothes, which can be excluded as per Eq. 8. To corroborate this, we
conduct an experiment where a user writes the letter ’a’ wearing three diferent types of clothing (coat, T-shirt,
sweater), and the resultant DCG, illustrated in Fig. 12, are strikingly similar despite the change in attire. Notably,
dynamic interferences such as body movement could alter the DCG, which we address in Sec. 6.7. Nonetheless,
for the purposes of our study, we assume only hand movements without other dynamic interferences.
Identifying individuals based on their handwriting, however, poses a signiicant challenge, primarily due to

the subtlety and complexity of handwriting characteristics. In contrast to general handwriting recognition which
focuses on identifying letters or digits, user identiication requires a more nuanced approach to feature extraction.
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Fig. 12. The DCG under diferent user clothes.

One such feature is the DCG slope, particularly evident when examining the letter ’a’. For instance, User2’s
handwriting displayed a noticeably jittery slope, in contrast to the smoother slope of User1. Manually setting
thresholds for these minute diferences is a daunting task, given the variability in handwriting styles. This is
where machine learning, with its prowess in detecting and learning from subtle variations, becomes invaluable.
Speciically, we leveraged a traditional machine learning classiier, the Support Vector Machine (SVM), to tackle
this challenge.

Table 2. Impact of subsequences number.

number 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Acc(%) 68.3 69.4 71.8 72.1 74.6 77.2 79.7 78.3 75.4 74.0 73.5 72.9 72.1 71.6 71.0

The methodology we adopted involves a granular dissection of the DCG into multiple subsequences. Each
subsequence captures a segment of the handwriting stroke, and the slope of these segments sheds light on
the dynamic aspects of handwriting, such as speed and pressure changes. Determining the optimal number of
subsequences was a process of trial and error, balancing granularity with computational feasibility. We tested a
range of subsequence numbers, from 4 to 32, increasing in steps of 2, and analyzed their efectiveness as input for
the SVM. The results, tabulated in Tab. 2, revealed an optimal balance at 16 subsequences, achieving an accuracy
of 79%. This inding is pivotal, as it not only identiied the slope as a critical feature in handwriting analysis but
also set a benchmark for the level of detail required in our analysis.

To further reine our user identiication system, we incorporated additional statistical measures into our feature
set. These included maximum, minimum, mean, standard deviation, and root mean square values of the DCG,
each contributing a diferent perspective on the handwriting style. The resulting 21-dimensional feature vector,
a combination of 16 slopes and 5 statistical measures, was then fed into the SVM. The outcome was a notable
increase in accuracy, reaching 87%.

In our quest for even higher accuracy, we explored the concept of aggregating data from multiple tags, inspired
by methodologies prevalent in gesture recognition research. By utilizing four tags instead of two, we efectively
expanded our data dimensionality, providing a more comprehensive view of each user’s handwriting style. This
multi-tag approach propelled our system’s accuracy to an impressive 91% for the identiication of 20 users.

This comprehensive study not only highlights the individuality embedded in handwriting but also demonstrates
the eicacy of combining detailed DCG analysis with machine learning techniques in user identiication. Our
approach, characterized by its multidimensional feature vector and multi-tag data aggregation, sets a new standard
in the ield of biometric user identiication, ofering both high accuracy and robustness.
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However, for a practical intrusion defense system, it’s not necessary to identify the ID of every user. Instead, it
suices to detect the intruders. In other words, we can transform the multi-classiication problem into a binary
classiication problem between legitimate and illegitimate users. Speciically, in the training phase, we categorize
data from legitimate users into one group, while all other users are treated as illegitimate. Upon the arrival of an
unknown user, the system performs an inference process. If the user is recognized as legitimate, their handwritten
content is displayed. If identiied as illegitimate, their data are stored in a database dedicated to illegitimate
users and are subsequently utilized to reinforce the training process, thereby enhancing the system’s recognition
capabilities.

6 Implementation and Evaluation
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(a) Experimental setup
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Fig. 13. Experiment setup:(a) presents the basic experimental scenario. (b) consists of three handwriting datasets: 26 lower
case leters, 10 digits, and 10 graphics (the red line presents the writing track). (c) depicts 5 positions and 4 orientations for
handwriting.

6.1 Experimental Seting

Hardware Coniguration: Our setup includes an ImpinJ Speedway R420 reader [34] that conforms to the EPC
Gen2 standard [53]. We employ two sizes of Alien RFID tags [33], measuring 5�� × 2�� and 10�� × 5��. The
reader operates within the 920-926 MHz frequency range, utilizing a directional antenna with a 10�� gain. With
two tags, the sampling rate approximates 200Hz. To mitigate network latency efects, we utilize the reader’s
timestamp feature in lieu of received time.

Software Coniguration: Communication with the reader is facilitated through the Impinj LLRP Toolkit [12].
The ImpinJ reader has been enhanced to support phase reporting. For networking and signal processing, our client
software utilizes C# and Matlab, respectively, and runs on a Lenovo PC with a 2.5 GHz Intel Core i5 processor
and 8GB RAM.

Testing Environment: As depicted in Fig. 13(a), a total of four tags are deployed, grouped in pairs. Each pair
is attached to a vertical support pole, with a 0.2m gap between the tags in each group. The lower tag is positioned
1m above the ground, and the distance between the support poles is 1m. The antenna is suspended between the
two poles, 1.5m above the ground. The user sits on a chair facing the space between the two poles, extending
his hand 0.5m from the two sets of tags. The body remains as still as possible, with only the arm moving. The
user performs handwriting tasks, comprising 26 lowercase letters, 10 digits, and 10 graphic symbols (shown in
Fig. 13(b)), in the space surrounded by these tags. Handwriting positions and orientations (Fig. 13(c)), include ive
locations ({p1,p2,p3,p4,p5}) and four directions ({front,back,left,right}). Other inluential factors such as writing

ACM Trans. Sensor Netw.



18 • Y. Feng et al.

duration, size, presence of metal, tag quantity, and inter-tag distance, are standardized as {p1, front, 3s per gesture,
10cm diameter, hand, 4 tags, 60cm} for evaluation. Twenty volunteers, aged 20-30, participated as system users.

6.2 Handwriting Recognition Results

The evaluation of our handwriting recognition system encompassed three datasets. Initially, we assessed the
overall performance and subsequently analyzed the inluence of various factors using a dataset comprising 26
lowercase letters.
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(a) Confusion Matrix for alphabet
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Fig. 14. Accuracy of Handwriting Recognition.

Performance on alphabet: Twenty participants are instructed to write each lowercase letter 100 times under
default conditions. Post-extraction of DCG features, recognition eicacy was assessed as outlined in Subsection 5.3.
The confusion matrix, displayed in Fig. 14(a), reveals that 21 letters achieved a mean accuracy of 94%, whereas the
remaining 5 letters, speciically {c,e,o},{g,y}, exhibited an 85% accuracy due to their stroke similarities resulting in
comparable DCG features. Nevertheless, the aggregate accuracy stood at 93.5%, indicating robust performance.
Performance on digit: The system’s efectiveness in recognizing digits 0 through 9, as shown in Fig. 13(b),

was also tested. Each participant wrote each digit 100 times, and the outcomes are depicted in Fig. 14(b). The
average accuracy for the digits was an impressive 95.2%. However, the recognition accuracy for digits 0 and 6
was lower at 88%, attributable to their similar trajectories and consequent DCG features.

Performance on graphic : Our system also analyzed ten types of graphics: triangle, rectangle, circle, star,
trapezoid, crescent, ininity, lower, vortex and asteris as illustrated in Fig. 13(b). Participants drew each graphic
100 times following speciic trajectories. The results, shown in Fig. 14(c), indicate an overall accuracy of 95.8%,
surpassing that of letter recognition. Notably, rectangles and trapezoids were commonly confused due to their
similar strokes, resulting in a reduced mean accuracy. In conclusion, graphics recognition proved simpler and
more accurate compared to letter recognition.

Impact of position and orientation: To investigate the impact of position and orientation on RF-Eye, we set
ive positions, i.e. (p1,p2,p3,p4,p5), and four orientations, i.e. (Front,Back,Left,Right), in the sensing area as shown
in Fig. 13(c). The users write each letter 50 times in each orientation of each position. The sensing results are
depicted as Fig. 15(a). It can be seen that the accuracy of every position or orientation is higher than 91%, which
shows the performance of RF-Eye is not impacted by the position and orientation.
Impact of writing time and writing size: Next, we study the inluence of writing time and writing size.

The writing time is deined as the time of inishing one letter, which is set as 0.5, 1, 2, 3, and 4s. The writing size
can be represented as the diameter of letters, which is set as 5, 10, and 20cm. We repeat experiment 50 times for
each setting and depict the results in Fig. 15(b). Above all, the mean accuracy improves from 80% to 92% with
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Fig. 15. Performance for Handwriting Recognition under the Impact of Diferent Factors.

the writing time increasing from 0.5 to 4s. It is easy to understand because there are more samples that increase
the resolution of the ingerprint. Notice that the accuracy of 3s reaches 92%, which is enough for handwriting
recognition. Besides, the accuracy becomes higher with the larger writing size in writing time. This is because
the writing size induces a higher phase change, which makes the ingerprint more obvious. In our experiment,
we advise the writing size as 10cm, and the accuracy reaches 92% in the 3s writing time.

Impact of distance and material: We now test our system on diferent materials and efective working
distance. We employ two types of material including hand and metal for evaluation. In addition, we varied the
distances between the reader and tags from 0.5m to 7m, with the user writing letters at position p1, as depicted in
Fig. 13(c). We conduct 50 repetitions of the experiment at each distance, and the results are displayed in Fig. 15(c).
The average accuracy decreased from 92.4% to 77% as the distance increased from 0.5m to 7m. This decline is
primarily attributed to the weakening of the Received Signal Strength Indicator (RSSI) with increasing distance.
Speciically, the RSSI decreases from -30 dBm to -90 dBm as the distance increases. When the signal drops below
-60 dBm (at distances greater than 6m), it becomes too weak for accurate sensing. To maintain a high accuracy ,
the optimal working distance should not exceed 6m. What’s more, the accuracy of metal is higher than hand.
This is because the metal has a stronger ability to relect signals than hand.

Impact of tag numbers and user group: To test the efect of the number of tags, we increased the tags from
2 to 6. Meanwhile, we divide 20 volunteers into three groups according to their height. The letters are written 50
times by each user group for each tag number. Fig. 15(d) depicts the results. As we can see, the accuracy irst
rises and then falls with the tag number increasing, which reach a highest value 92.4% when the number is 4. The
right amount of tags can improve accuracy, but too many tags could reduce performance since of a low sampling
rate. On the other hand, the accuracy for each user group is similar, which demonstrates the system performance
is not afected by user size.

6.3 Results on User Identification

In this subsection, we present an in-depth analysis of our system’s user identiication capabilities, examining
various factors that inluence its performance.

Table 3. The accuracy of identifying illegal users.

Total numbers/Illegal numbers 20/2 30/4 40/6 50/8

Identiication accuracy 99.5% 99.1% 98.5% 97.5%

Performance on user identiication:We engage 50 diverse volunteers (comprising an equal number of males
and females) for this study. Their task is to write each of the 26 lowercase letters 50 times, generating a substantial
dataset for analysis. The resulting data, visualized through a confusion matrix in Fig. 16, shows a promising mean
overall accuracy rate of 91% across all users, a level deemed satisfactory for real-world applications. To evaluate
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Fig. 16. Confusion Matrix for 20 users.

the illegal user’s identiication, we set diferent proportions of illegal users as depicted in Tab. 3 and calculate the
identiication accuracy. We can conclude that the overall accuracy is 98.6%, which proves that our system has
good defense capabilities against illegal intrusions.
Impact of gesture type and position: Our study further extends to understanding how various gesture

types - encompassing 26 lowercase letters and 10 graphic symbols - and their spatial execution positions afect
identiication accuracy. Each gesture was performed 50 times across 5 distinct positions, as depicted in Fig.13(c).
Analysis of the outcomes (illustrated in Fig.17(a)) reveals mean overall accuracies of 90.4% for handwritten letters
and 89% for graphic symbols. These results suggest that gestures with greater complexity tend to more efectively
disclose individual handwriting characteristics. Moreover, the consistent accuracy across diferent positions
underscores the system’s resilience to spatial variations, which is critical for practical application scenarios.
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Fig. 17. Performance for User Identification under the Impact of Diferent Factors.

Impact of writing time and writing size: In another dimension of our research, we explored how the
duration of writing (ranging from 0.5 to 4 seconds) and the size of the written characters (5, 10, 20 cm) impact
the system’s accuracy. Each condition was replicated 50 times to ensure statistical signiicance. The indings, as
shown in Fig. 17(b), indicate a direct correlation between increased writing time and size with higher accuracy
rates. This trend aligns with conventional wisdom in gesture recognition, suggesting that extended interaction
times and larger gestural expressions provide richer data for analysis. Optimally, setting the writing duration at 3
seconds and the character size at 20 cm yielded the best results, achieving a commendable accuracy rate of 90%.
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Impact of tag numbers and environment: Lastly, we examined the inluence of varying the number of RFID
tags (ranging from 2 to 6) and the impact of diferent environments (indoor vs. outdoor) on system performance.
Participants were asked to write the letters 50 times under each tag count. The analysis, presented in Fig. 17(c),
shows that an optimal tag count of 4 yields the highest accuracy rate of 90.7%. This inding suggests a balance in
tag quantity is crucial; too few tags limit data richness, while too many can overload the system and degrade
performance. When comparing performance in diferent environments, a slight decrease in accuracy is observed
in outdoor settings (88%) compared to indoors, likely due to increased environmental interference. However, the
strong performance in both contexts highlights the system’s robustness and adaptability to varied conditions,
conirming its potential for diverse real-world applications.

Fig. 18. Handwriting words ‘apple’ and its DCG patern

6.4 Results on Word Recognition

We clarify that our system is capable of recognizing sequences of characters. To address the concerns raised,
we’ll explain two key points. First, the DCG features are position-independent. This means that writing can be
accurately recognized at any location within the working area, eliminating the need for users to position their
hands at a speciic starting point for each experiment. Second, when writing sequences of characters, there is a
brief pause between characters during which the hand remains still. Under such static conditions, the reader’s
phase does not change, and since the DCG is calculated based on the phase diference between adjacent time
slots, the DCG value becomes zero during these pauses. We observe a series of zero-value points, which serve as
markers to segment between characters. We conduct a validated experiment, such as writing the word "apple," and
observed that the DCG pattern (as shown in Fig. 18) features a segment of zero between each letter. This segment
lasts approximately 0.2 seconds, indicating a pause before continuing with the next letter. This characteristic
allows us to easily segment words.
To further evaluate the system’s efectiveness, we selected ive commonly used words with varying lengths

and structures: sit, stand, work, walk, and run. Five participants are asked to write these words 100 times in
their natural handwriting within a designated area, creating a substantial dataset for analysis. The system’s
performance, detailed in Fig. 17(d), shows an overall word recognition accuracy of 89.8%. However, accuracy
varied among the words, with stand, the longest word, having a lower accuracy of 87%. This variation is likely
due to the complexities of writing longer words. User identiication achieved an 87% accuracy, slightly lower
than word recognition, relecting the challenges of capturing individual handwriting nuances like speed and
curvature. These results demonstrate the system’s robustness in word recognition and user identiication. As a
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result, RF-Eye system can be used for recognizing writing on blackboards, with tags placed on either side of the
blackboard and an antenna suspended above. This setup enables the system to capture and record the content
written by the teacher, providing signiicant convenience.

6.5 Results on time complexity
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Fig. 19. Time cost and accuracy.

In this section, we discuss the time complexity of the system, focusing primarily on the handwriting recognition
component. The time cost for this process encompasses three main aspects: signal preprocessing (see Subsection
5.1), DCG pattern construction (see Subsection 5.2), and the handwriting recognition itself (see Subsection 5.3).
A critical factor in this analysis is the calculation of the DCG according to Equation 8, where Δ� determines
the number of samples per second. We varied the number of samples from 10 to 100, in increments of 10, and
recorded the time costs associated with each. The results, as shown in Fig.19(a), indicate that the time cost
increases with the number of sampling points. However, this increase in sampling rate enhances the accuracy of
handwriting recognition due to the improved resolution of the DCG. At the maximum of 100 samples, the time
cost reached only 1.3 seconds, which satisies the requirements for real-time processing. The results also show
that user identiication takes longer than handwriting recognition due to the computation of additional features.
Furthermore, we evaluated the accuracy of handwriting recognition in relation to the sampling rate, as illustrated
in Fig.19(b). It is evident that the accuracy exceeds 90% when the sampling rate surpasses 80, a threshold easily
achievable in COTS RFID systems.

6.6 Results on Chinese characters

In this study, we examine the handwriting recognition accuracy of Chinese characters. We selected a set of 10
characters, numerically ‘1’ to ‘10’, for our evaluation. Each character was written 50 times to generate a robust
dataset, and the results are illustrated in the confusion matrix presented in Fig. 20. We observed that characters
‘1’, ‘2’, ‘3’, and ‘10’ achieved high recognition accuracies exceeding 90%. In contrast, characters ‘4’ through ‘9’
displayed lower accuracies, all under 85%, which is unsatisfactory. This reduction in accuracy can be attributed
to the multi-stroke nature of these characters, which complicates the representation of directional changes. The
performance tends to deteriorate further with the introduction of more complex characters. Addressing this issue
presents a signiicant challenge for the next phase of our research.

ACM Trans. Sensor Netw.



RF-Eye: Commodity RFID Can Know What You Write and Who You Are Wherever You Are • 23

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.05

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.04

0.00

0.00

0.00

0.00

0.00

0.03

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.03

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.04

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.05

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.02

0.00

0.00

0.02

0.00

1.00

1.00

0.99

0.78

0.75

0.77

0.80

0.82

0.81

0.98
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6.7 The impact of interference

We have investigated the performance of handwriting recognition in the presence of potential interference from
other moving objects. We analyze four distinct scenarios while a user wrote the 26 lowercase letters, repeating the
process 50 times per letter: (1)The user remains stationary, (2)The user’s body is shaking, (3)The user is nodding,
(4)Another person is moving around the user. The accuracy of the handwriting recognition is presented in Fig. 21.
Our indings show that while the recognition accuracy is highest at 93% when the user is stationary, it slightly
decreases when the body shakes or the user nods. This decline is attributed to phase disturbances caused by
motion, introducing noise into the DCG calculations. However, we demonstrated that this noise could be mitigated
using iltering techniques such as Principal Component Analysis (PCA). Additional tests are conducted with
the user in both sitting and standing positions, revealing no signiicant diferences in accuracy. This is because
both postures are stationary, and a stationary environment does not afect signal propagation. Furthermore,
the user can perform the writing actions using either a ist or an open palm; neither method impacts system
performance. This is because the system processes phase diferences, which indicate changes in the direction
of hand movement, making the speciic way used for writing irrelevant. In conclusion, the RF-Eye technology
exhibits optimal performance when the user remains still and maintains a reasonable degree of robustness against
minor disturbances, indicating its strong potential for real-world applications.

7 Conclusion

This paper introduces RF-Eye, a contactless position-independent handwriting recognition and user identiication
system without prior training based on commodity RFID. By using each RFID tag as a unique viewpoint for
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observing hand movements and employing pairs of tags to track directional changes, a position-independent
feature, DCG, is proposed based on the signal transmission model and the Fresnel Zone, which is related to
changes in gesture direction. Based on DCG, unique patterns for common handwriting symbols are generated to
realize accurate handwriting recognition. To further bolster system security, these patterns are pertinently linked
with distinct handwriting styles by extracting iner-grained features, thus efectively preventing unauthorized
users’ misuse of the system. Extensive experiments demonstrate the strong robustness of RF-Eye to diferent
positions and orientations both on handwriting recognition and user identiication tasks.
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