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PhyFinAtt: An Undetectable Attack
Framework Against PHY Layer

Fingerprint-based WiFi Authentication
Jinyang Huang, Bin Liu, Chenglin Miao, Xiang Zhang,

Jiancun Liu, Lu Su, Zhi Liu, and Yu Gu

Abstract—WiFi connection has been suffering from MAC forgery attacks due to the loose authentication mechanism between access
points (APs) and clients. To address this problem, the physical (PHY) layer information-based fingerprint has been adopted for safe
WiFi authentication. Since such a fingerprint is constant and unique for each specific network interface card (NIC), it can effectively
prevent MAC forgery attacks. However, the PHY layer information-based fingerprint is still vulnerable to malicious attacks as it is
extracted from Channel State Information (CSI), and its stability can be affected by the wireless environment. In this paper, we
propose a novel undetectable attack framework, called PhyFinAtt, base on which the attacker can undermine the stability of the PHY
layer-based authentication fingerprints through human movement and further attack the WiFi authentication protocols. Specifically,
we first demonstrate that human movement at a designated location can affect the PHY fingerprint. We then illustrate the impact of
human movement on the PHY fingerprint and the relationship between the movement and the channel quality to ensure that the PHY
fingerprint is destroyed by the movement in an undetected way without affecting normal communication. Extensive experiments in
real-world scenarios show that our proposed attack can effectively disrupt the stability of the PHY fingerprints and significantly
degrade the performance of the authentication protocols based on such fingerprints. To the best of our knowledge, this is the first
study on effective attacks against the PHY information-based WiFi authentication protocols. Furthermore, we also present a practical
defense mechanism without involving any additional equipment to mitigate attacks similar to PhyFinAtt.

Index Terms—WiFi connection, MAC forgery attack, authentication based on PHY information, fingerprint attack.
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1 INTRODUCTION

1.1 Backgrounds and Motivations

A S a pervasive communication medium, WiFi has been
widely adopted to support various equipment con-

nections in Wireless Local Area Networks (WLAN) and
the Internet of Things (IoT). However, with the number of
devices connected by WiFi reaching billion, many security
issues have been discovered with WiFi connections [1],
[2]. Among these issues, rogue access points (APs), rogue
clients, and WiFi freeloading are the most prevalent ones,
which have brought serious security threats. Taking the
rogue AP attack as an example, the rogue AP copies the
same service set identifier (SSID), IP address, and MAC
address as that of the legitimate AP. Once user clients
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are fooled into connecting this rogue AP, the man-in-the-
middle attack could be launched by the hacker, and all
WLAN communication can be eavesdropped.

To address the above security issues, many WiFi au-
thentication protocols have been developed. However, tra-
ditional authentication protocols, such as WPA, WPA2,
and WEP, are vulnerable to MAC forgery attacks [3], [4]
because their authentication information is on or above
the MAC layer, and all this information can be forged.
Recently, authentication using physical (PHY) layer in-
formation has drawn significant attention [5]–[11]. These
algorithms propose to extract unique fingerprints from
the PHY layer information, which relates to hardware to
authenticate WiFi devices. Since the extracted unforgeable
fingerprint is unique for every device, by establishing a
legal device fingerprint library and using this hardware
fingerprint for authentication, whether the connected de-
vice is a legal device can be correctly judged. Thus, these
PHY information-based authentication protocols can reject
illegal device access and resist MAC forgery attacks. The
state-of-the-art PHY fingerprint-based protocols [5], [6] can
achieve high detection ratios of more than 95% for MAC
forgery attacks through fingerprint matching.

Although the PHY fingerprints used in existing works
can help improve the security of WiFi connections, they are
extracted from WiFi signals, and their stability is inevitably
affected by the wireless environment. If an attacker delib-
erately attacks the wireless environment, the extracted fin-
gerprint of a legal device may be changed, which is fatal to
the PHY information-based WiFi authentication protocols.
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Fig. 1 An attack example based on the PhyFinAtt frame-
work.

Despite the serious security threats, there is no existing
work studying the attacks against the PHY information-
based WiFi authentication protocols.

To fill the gap, in this paper, we propose a novel unde-
tectable attack framework, called PhyFinAtt, base on which
the attacker can effectively degrade the performance of the
PHY information-based WiFi authentication protocols by
interfering with the wireless environment using human
movements. As shown in Fig. 1, before the attack, the
normal client passes the fingerprint authentication of the
AP and successfully accesses the WLAN. However, by
using the designed human movements to affect the wireless
environment and further affect the fingerprint extraction
process, PhyFinAtt changes the extracted PHY fingerprint
of the normal client and makes it unable to match that in the
legal fingerprint library, which finally leads to the unsuc-
cessful authentication. It is worth noting that the proposed
attack is undetectable, and it does not require access to the
client or the AP. Furthermore, the attack process is targeted,
and it does not affect the normal communication of other
devices.

1.2 Challenges and Contributions
To effectively attack the PHY information-based WiFi au-
thentication protocols, the attacker should be able to de-
stroy the extracted PHY fingerprint, which is usually stable
for various environmental factors. Besides, the attack pro-
cess should be unobtrusive and undetected, which means
that normal communication should not be affected so that
the authentication system cannot detect the attack behavior.
In summary, we need to address two major challenges
in order to perform effective attacks against the PHY
information-based WiFi authentication protocols.

• Stable PHY fingerprint: Since the PHY fingerprint is
determined by the hardware design, it is stable for
various environmental factors, e.g., sampling time,
temperature, and locations. Therefore, it is challeng-
ing to effectively attack and destroy the stability of
the fingerprint during its extraction process.

• Variable wireless environment: Devices need good
channel quality for regular communication, but the
human movement in our proposed attack obviously
downgrades the channel quality. Once the commu-
nication is affected, the attack can be easily detected.
Thus, another challenge is to balance the tradeoff

between the attack performance and the negative
impact of attacks on the channel quality.

To address the above challenges, we first analyze the
effect of human movement on PHY fingerprints and the
relationship between the movements and channel quality.
Then, a feedback mechanism is built to balance the effect of
the movement attack on PHY fingerprints and the impact
of movements on channel quality. Through human move-
ments in the Fresnel Zone, the attacker can significantly
change the PHY fingerprint of the attacked device without
affecting communication much. Extensive experiments in
real-world scenarios demonstrate the effectiveness of our
proposed attack framework (i.e., PhyFinAtt). In addition,
we also propose an effective defense mechanism to mitigate
attacks similar to PhyFinAtt.

In summary, we make the following contributions:

• To the best of our knowledge, this is the first study
on effective attacks against the PHY information-
based WiFi authentication protocols.

• In our proposed attack framework, we establish a
feedback mechanism to maximize the PHY finger-
print changes without affecting normal communica-
tion, which does not need additional hardware.

• To deal with fingerprint attacks similar to PhyFi-
nAtt, we present an effective and practical defense
mechanism based on the Channel State Information
(CSI) fluctuation threshold without any additional
equipment or system modifications.

• Extensive experiments with different types of de-
vices are performed in various real-world scenarios.
The experiment results show that under the Phy-
FinAtt attack, the stability of the PHY fingerprint
is obviously undermined, and the authentication ac-
curacy of the PHY information-based WiFi protocols
drops significantly.

2 RELATED WORK

The drawbacks of the existing authentication protocols in
802.11 WLAN have raised lots of security issues, e.g., rogue
APs, rogue clients, and freeloading. For rogue APs and
clients, by copying the SSID, IP address, and MAC address
of legal devices, these rogue devices can easily access the
WLAN and steal information from other devices connected
to the same WLAN. The freeloading AP means that the
attacking AP does not set a password, and all clients can
access this AP without authentication. However, the infor-
mation of the accessed clients could be risky and stolen. To
fill such security loopholes, lots of pioneer PHY fingerprint-
based methods [5]–[9], [12] have been proposed. Different
from cryptographic solutions, fingerprint-based methods
employ the hardware-related information derived from the
PHY layer to generate a unique fingerprint for each device.
This fingerprint is unique and constant for each device but
distinct for different devices. Furthermore, this fingerprint
is unforgeable due to its physical properties. Thus, this
fingerprint can be used to distinguish different devices and
determine whether the device trying to access the WLAN is
legal equipment, which effectively prevents MAC forgery
attacks.
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Due to the advantages of preventing MAC forgery
attacks, the PHY fingerprint-based authentication systems
have received increasing attention from both academia and
industry [5]–[9], [12], [13]. Some PHY fingerprints have
already been applied in real-world systems [14]. G. Reus-
Muns. et al. [15] proposed an additional physical layer au-
thentication method that detects a specific emitter through
RF fingerprinting. Moreover, the feasibility of this method
is demonstrated based on stations over the large-scale
over-the-air experimental POWDER platform in Salt Lake
City, Utah. By analyzing a dataset of 400 GB signal data
transmitted by 10000 radios, T. Jian. et al. [16] proposed
a deep learning (DL)-based RF fingerprinting algorithm
that can classify more than 1000 real devices. A DL-based
RF fingerprinting system ORACLE was proposed in [17]
to classify potential thousands of radios. By intentionally
inserting and learning the effect of controlled impairments
at the transmitter side, ORACLE can be effectively resilient
to spoofing attacks in the real world.

According to the feature type used as the fingerprint,
existing fingerprint-based WiFi authentication methods can
be broadly classified into two categories: network traffic-
based and hardware design-based.

Network Traffic-based: The work in [18] employed
the data rate information derived from the header of the
PHY frame as the fingerprint feature to classify the type
of different network interface cards (NICs). Similarly, the
inter-arrival time was used by the work [19] as the finger-
print to distinguish different AP types. As an improved
method from the above two papers, the work in [20]
used multiple wireless parameters, i.e., inter-arrival time,
transmission rate, and frame size, to fingerprint target
devices. However, since these features are all related to the
network traffic, they may be changed due to the variation of
the transmission content. Moreover, these network traffic-
based methods need to collect a large amount of data, thus
taking a long time and having high computation costs.
Oppositely, since radiometric features are highly related
to the device itself, it is a better way to use radiometric
features as fingerprints.

Hardware Design-based: A set of radiometric features
were extracted by PARADIS [21] as the device signatures,
including phase error, I/Q imbalance, and carrier phase
offset (CFO), to recognize different types of NICs. However,
this work needs to attach multiple additional sensors co-
located with the AP, which makes it inconvenient to de-
ploy on existing equipment. Motivated by this work, the
work in [5] inferred the device CFOs from WiFi CSI as
their hardware fingerprints without any special hardware
required to identify whether the device is legal equipment.
However, this CFO-based fingerprint needs a long time to
become stable, and multiple AP interference downgrades
its performance. Recently, the most stable PHY fingerprint,
which remains stable with respect to time, locations, and
dynamic environments, was proposed in [6]. Specifically,
the nonlinear phase errors (NLPEs) of different subcarri-
ers were extracted by [6] as the device fingerprint after
eliminating all linear phase errors (LPEs) since NLPEs are
attributed to the oscillator drift and I/Q imbalance, which
are the fundamental physical properties that cannot be
manipulated and remain fairly consistent over time but

vary significantly across devices.
Adversarial Attack and Jamming Attack: Some pioneer

methods propose to destroy the fingerprint by adversar-
ial samples or signal interferences [22], [23]. Specifically,
Liu, Q. et al. [22] proposed a practical method to craft a
white-box adversarial attack on the DL-based CSI feedback
process. The attack object of this work is the DL-based
CSI feedback process, and the structural information of the
network must be known when the attack is launched due to
the white-box. By injecting malicious packets, Sarita S. et al.
[23] presented a game-theoretic study on the security prob-
lem of CFO-based continuous physical layer authentication
in wireless networks and proposed adversarial attacks on
CFO-based continuous physical layer authentication. Be-
sides, by generating multiple kinds of adversarial examples
by the vanilla model for training and leveraging the con-
sistency loss for augmentation, Yang, J. et al. [24] proposed
SecureSense to defend against adversarial attacks for secure
device-free human activity recognition (HAR). Although
these methods propose attacks or defenses against WiFi,
these methods need to know the network structure in
advance or have significant impacts on the normal com-
munication of devices.

For all these authentication protocols, including net-
work traffic-based methods and hardware design-based
methods, their fingerprint features are all related to the dis-
tribution of electromagnetic fields since the electromagnetic
field distribution information is used as an intermediate
medium to extract these features. If the corresponding elec-
tromagnetic distribution is targeted to attack, the stability
of the fingerprint will be affected. There is no existing
work that has successfully attacked these WiFi authentica-
tion protocols based on PHY information without affecting
the normal communication of other devices. Furthermore,
there is no existing work studying the practical defense
scheme against such attacks. Inspired by this requirement
and to fill the research gap, we propose a novel unde-
tectable device PHY fingerprint attack framework PhyFi-
nAtt and present an effective defense mechanism accord-
ingly to deal with the fingerprint attacks similar to Phy-
FinAtt without any additional equipment. The proposed
defense mechanism is beneficial to the application of the
PHY fingerprint-based authentication protocols for better
maintaining the stability of the PHY fingerprints under
malicious attacks.

3 PRELIMINARIES AND OBSERVATIONS

3.1 Overview of Channel State Information
Since CSI incorporates the hardware-related information
and the channel characteristics encountered by the received
signals (e.g., multipath effect, power decay, and scattering
effect), most PHY information-based authentication pro-
tocols employ CSI as an intermediary to extract device-
related fingerprints [5], [6], [21]. Using CSI, which can pro-
vide fine-grained PHY layer information and characterize
the Channel Frequency Response (CFR) of the wireless
channel, NICs can continuously capture fluctuations in
channels [25].

In WiFi systems, the channel between each transmitter-
receiver (Tx-Rx) antenna pair can be divided into multiple
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subcarriers according to the Orthogonal Frequency Division
Multiplexing (OFDM) technology [26]. LetXi and Yi be the
frequency domain expressions of the transmitted and the
received signals of the ith Tx-Rx pair, respectively. Then, the
relationship between these two signals can be represented
using the following equation:

Yi = HiXi +Ni, (1)
where Hi is the complex-valued CFR of the ith Tx-Rx pair,
which can be measured by transmitting a known preamble
of OFDM symbols between the transmitter and the receiver
[26], and Ni denotes the additive white Gaussian noise.

According to the IEEE 802.11n standard [27], each chan-
nel in the 2.4GHz band has 56 subcarriers. Thus, the esti-
mated value of Hi for the 56 subcarriers can be expressed
as:

Hi = [hi
(1),hi

(2), · · · ,hi(k), · · ·hi(56)], (2)

where hi
(k) is complex-valued CFR of the kth subcarrier

in the ith Tx-Rx pair. CSI measurements contain these CFR
values, and hi

(k) can be represented as:

hi
(k) =

∣∣∣hi(k)
∣∣∣ · e−j·∠hi

(k)

= Ii
(k) + jQi

(k), k ∈K (3)

where
∣∣∣hi(k)

∣∣∣ and ∠hi
(k) denote the amplitude and the

phase of the kth subcarrier in the ith Tx-Rx pair, respec-
tively. Besides, the raw CFRs estimated in NICs can also
be recorded as the I/Q signal. I and Q are the in-phase
component and the quadrature component, respectively.
K is the set of subcarrier indexes. The φ is a vector and
represents the measured phases of all subcarriers in one
received packet, which can be calculated as:

φ = arctan(
Q

I
). (4)

3.2 Device-based Fingerprint

All fingerprint-based WiFi authentication protocols are re-
lated to electromagnetic field distribution. Network traffic-
based methods transmit various kinds of content infor-
mation from which fingerprints can be extracted, and the
transmitted information is stored in the baseband signal.
For hardware design-based methods, they use radiometric
information to extract specific features, and the radiometric
information is highly related to the carrier signal. Since
the baseband signal and the carrier signal are modulated
and then propagated by electromagnetic waves, these sig-
nals are inevitably affected by electromagnetic distribution.
Owing to the fact that the attack target of PhyFinAtt is the
electromagnetic distribution, PhyFinAtt is thus effective for
all fingerprint-based WiFi authentication protocols.

In this paper, we first take the state-of-the-art NLPE
feature-based authentication [6] as an example to illustrate
our designed attacks since the NLPE feature is the most
stable PHY fingerprint, which remains stable with respect
to time, locations, and environments. Then, to evaluate
the generalization ability of PhyFinAtt, we also test its
performance on other PHY fingerprints used by the state-
of-the-art authentication protocols in Sec. 6.3. Fig. 2 shows
the NLPE features of four different devices, including two
laptop NICs, an AP, and a cellphone. It is obvious that the
NLPE features are different across devices and thus can be
used as hardware fingerprints. The NLPE authentication
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Fig. 2 Four different devices and their NLPE fingerprints.

determines whether a device is legal or not by matching
the collected fingerprint with the legal fingerprint library.
If the similarity between the collected fingerprint and any
fingerprint in the legal fingerprint library is greater than
a threshold, the fingerprint owner is considered as a legal
device, and the authentication succeeds. Otherwise, the au-
thentication fails, and the device cannot access the WLAN.

Next, we discuss how to extract the NLPE PHY fin-
gerprint. Owing to the imperfect hardware design and
the variant signal transmission environment, the phases
measured at the receiver are distinct from those at the
transmitter. In particular, the phase difference between
the transmitter and the receiver can be grouped into two
categories, i.e., linear phase error (LPE) and NLPE [28]. LPE
and NLPE represent that the phase errors change linearly
or nonlinearly with respect to the subcarrier indexes, re-
spectively.

According to [29], [30], for a particular pair signal of
transmitter and receiver, the subcarrier phases φ measured
at the receiver can be formulated as:

φ = ϕre +Lpbd +Lsfo +Lcfo +Ltof +Nto, (5)
where ϕre are the initial phases at the transmitter. Lpbd,
Lsfo, Lcfo, and Ltof express the phase offsets due to
packet boundary detection (PBD), sampling frequency off-
set (SFO), CFO, and time of flight (ToF), respectively, and
these phases are all LPEs [28]. According to [6], imperfect
hardware design causes an NLPE, which means this NLPE
is highly related to the hardware itself and is suitable to
represent device information. Besides, by affecting multi-
path, human motion can also lead to an NLPE [28], [31].
Therefore, the last element Nto is the total NLPE and can
be expressed as:

Nto = Nha +Nmo, (6)
where Nha and Nmo represent the NLPEs caused by im-
perfect hardware design and human motion, respectively.
However, since it is difficult to eliminate the NLPE Nmo

caused by human motion, the authentication protocol in [6]
directly uses the total NLPE Nto as the fingerprint, which
makes the authentication protocol vulnerable to malicious
attacks. It is entirely possible for an attacker to use human
motion to change a legitimate device’s fingerprint (i.e., the
NLPE Nmo) and further attack the authentication process.
In this paper, we study the possibility of performing such
attacks.
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Fig. 3 Necessary capabilities for the attack and workers.
The green, blue, and purple fonts represent the capabilities
required for an attacker, workers, and both, respectively.

3.3 Effect of Motion on Fingerprint and Channel Qual-
ity

Effect of Motion on Fingerprint: SinceNha is related to the
imperfect hardware design of NIC and it is a constant for
each specific NIC [6], the variation of NLPE fingerprintNto

equals that of Nmo caused by human motion. Specifically,
by comparing Nto with N em

to that is generated in a room
without human motion, we can estimate the NLPE Nmo

caused by human motion as:

Nto −N em
to = Nha +Nmo − (Nha +N em

mo )

Nmo = Nto −N em
to ,

(7)

where N em
to and N em

mo are the total variation of NLPE
fingerprint and the NLPE generated by the motion when
there is no human motion in the range, respectively. In
particular, N em

mo equals 0 [6]. Thus, Nmo can be estimated
when the hardware design of NIC is fixed (Nha is constant).
Based on this fact, we can quantify the attack effect of the
human motion on the NLPE fingerprint by determining the
relationship between the motion intensity and the NLPE
Nmo.

By affecting the distribution of multipath and the length
of each path, human movements ultimately affect the time-
of-flight (ToF) of the signal. Moreover, the change of ToF
can further affect the NLPE fingerprint. The reasons are de-
scribed as follows. As shown in Eq. (5), the phase difference
between the transmitter and the receiver is mainly caused
by various phase errors. For all LPEs, only the phase error
Ltof caused by the ToF changes significantly under the
effect of human movements. However, the acquisition of
the NLPE fingerprint needs to filter out the varying Ltof .
Thus, human movements can affect the NLPE fingerprint
by changing the signal ToF.

Although static obstacles can change the multipath dis-
tribution, they cannot continuously change such distribu-
tion. Since the influence of constant multipath distribution
changes is eliminated during the extraction of the NLPE
fingerprint [6], the NLPE fingerprint cannot be changed
by static obstacles. However, due to the constantly vary-
ing attitudes, human movements can continuously change
the multipath distribution, which can further change the
NLPE fingerprint. Thus, in this paper, instead of using
static obstacles, we choose human movements as the attack
medium.

Effect of Motion on Channel Quality: WiFi signals
usually arrive at the receiver through multiple paths due

to the effect of human bodies and other objects in the
environment. If a wireless signal (the kth subcarrier in the
ith Tx-Rx pair) arrives at the receiver through Υ different
paths, the CFR hi

(k)(ϑ, t) can be calculated based on the
following equation [29], [31]:

hi
(k)(ϑ, t) = e−j·2π∆ϑt

Υ∑
℘=1

$℘(ϑ, t) · e−j·2πϑτ℘ (t), (8)

where j is the imaginary unit, ϑ represents the kth subcar-
rier frequency, $℘(ϑ, t) denotes the complex-valued repre-
sentation of attenuation and initial phase offset of the ℘th

path, and e−j·2πϑτ℘ (t) denotes the phase shift on the ℘th

path which has a propagation delay of τ
℘
(t). In addition,

e−j·2π∆ϑt is the phase shift caused by the subcarrier fre-
quency difference between the transmitter and the receiver.

Human posture can also affect channel quality. The
changes in human posture during a movement can affect
the size of the signal-blocking area and the length of the
signal propagation paths, which can further lead to the
variation of the attenuation coefficient $℘(ϑ, t). According
to Eq. (8), the variation of $℘(ϑ, t) directly changes the
absolute value of CFR hi

(k)(ϑ, t). Furthermore, since the
absolute value of CFR has a positive relationship with the
Received Signal Strength Indicator (RSSI) [26], the RSSI also
fluctuates due to human motion. Therefore, the movement
of human bodies obviously degrades the channel quality.

4 ATTACK GOAL, IMPACT, AND THREAT MODEL

Attack Goal: The attack goal of PhyFinAtt is to make the
attacked legal devices unable to access the WLAN. Through
designed human movements at specific locations to affect
the fingerprint extraction environment, PhyFinAtt destroys
the PHY fingerprints of legal devices and further makes the
attacked fingerprints unable to match the legal fingerprint
library, which causes these legal devices to be unable to
access the WLAN and finally results in the paralysis of the
corresponding WLAN.

Attack Impact and Potential Implications: Apparently,
in addition to affecting the PHY fingerprint, the movement
of the human body at the specified location will also affect
the communication quality in the environment. Therefore,
the key impact of PhyFinAtt is to destroy the stability
of PHY fingerprints and downgrade the communication
quality in the environment. However, in order to ensure
the stealth of the attack, the attack should be targeted and
not be able to affect the normal communication of other
devices. Therefore, how to set a reasonable attack intensity
to balance the attack effect and the impact of the attack
on the environment is a key research issue. Compared
with the traditional jamming attacks [32], [33] that interfere
with the communication of all devices, PhyFinAtt can make
the attacked device unable to access the network without
affecting the normal communication of other devices.

Threat Model: Fig. 3 shows the necessary capabilities
for the attack and workers. The green, blue, and purple
fonts represent the capabilities required for an attacker,
workers, and both, respectively. To carry out the PhyFinAtt
attack successfully, the attacker and workers need to have
a total of four capabilities. We assume that the attacker
can employ a few workers and let them walk around the
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Fig. 4 PhyFinAtt framework.

room (Capability 4) where the attacked device is located.
In addition, each worker has a smartphone that can be
used to obtain real-time RSSIs and channel information
about the attack targets (Capability 3). There are many
smartphone Apps (e.g., WiFi Analyzer) that can help obtain
such information in practice. Before the attack starts, to
determine the initial attack intensity according to the real
channel quality, the attacker needs to use a smartphone to
measure the RSSI value within 50cm of the attacked device
(Capability 1, 3). Then, during the attack, the employed
workers walk back and forth in the area calculated by
PhyFinAtt to influence the fingerprint extraction process.
The determination of the attack area is based on the relative
position of the transmitter and receiver, and the relative
position can be roughly estimated by the attacker’s visual
inspection (Capability 2).

5 ATTACK METHODOLOGY

5.1 Overview
Fig. 4 shows our proposed PhyFinAtt framework, which
contains four components, including two offline compo-
nents (i.e., Motion Attack Effect Module and RSSI-Human
Initial Speed Module) and two online components (i.e.,
Real-time Speed Adjust Module and Real-time Fingerprint
Attack System). The Motion Attack Effect Module is used to
determine the factors that can affect the NLPE fingerprint
and decide the specific attack method. The purpose of
the RSSI-Human Initial Speed Module is to determine an
initial velocity for the workers’ movement and the worker
number according to the actual channel quality. The input
of this module is the RSSI near the attacked AP (< 50cm),
which is collected by the attacker’s smartphone. The model
output is the initial velocity and the number of workers.
Then, to make the attack unobtrusive and keep RSSIs
higher than the normal communication threshold during
the attack process, the real-time worker speed adjustment is
performed in the Real-time Speed Adjust Module. Finally,
the Real-time Fingerprint Attack System is set to attack
the extraction process of the PHY fingerprint and destroy
the stability of this fingerprint. As shown in Fig. 4, after

Offline: Motion Attack Effect Module

Obtain CSI Pre-processing
Eliminate 

environmental 
impacts

Quantify motion 
attack effect

Compare the contribution 
of hardware design and 

motion on NLPE fingerprint

Calculate NLPE 
fingerprints

Fig. 5 Motion Attack Effect Module framework.

the attack, the original invariant NLPE fingerprint becomes
unstable, which inevitably results in the failure of the
WLAN access.

5.2 Motion Attack Effect Module
Fig. 5 shows the details of the Motion Attack Effect Module.
In this module, we analyze the effect of human movement
on the fingerprint and decide on the specific attack method.
The attack effect measurement is also introduced in this
part.

Obtain CSI and Pre-processing: The CSI phase is first
extracted according to Eq. (4). Then, we unwrap the original
phases to reconstruct the real phase relationship of all
subcarriers. Finally, refer to [28], the frames with abnormal
unwrapped phases are smoothed by the moving average
filtering to obtain the stable NLPE fingerprint.

Eliminate Environmental Impacts: The phase errors of
PBD (Lpbd) and SFO (Lsfo) in the same frame are all related
to the subcarrier index set K, which can be calculated as:

Lpbd = 2πα ·K, (9)

Lsfo = 2πβ ·K, (10)

where α and β are constants depending on PBD and SFO,
respectively. Besides, the ToF offset Ltof is correlated to
subcarrier frequencies:

Ltof = 2πtfF

= 2πtf (fc · ~q + fbK)

= 2πtffc · ~q + 2πtffbK

= Z + 2πtffbK,

(11)
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where tf is ToF, and it is affected by the device location.
F is the subcarrier frequency set that is calculated based
on the center subcarrier frequency fc, the identity matrix ~q,
the frequency difference between two adjacent subcarriers
fb (equals 312.5 kHz [27]), and the subcarrier index set K,
i.e., F = fc · ~q+ fbK. Since 2πtffc · ~q is independent of K
and tf is an invariant value in one received frame, we use
Z to replace the first part.

Then, the phase estimated at the receiver is rewritten
as:
φ = ϕre +Lpbd +Lsfo +Lcfo +Ltof +Nto

= ϕre + 2πα ·K + 2πβ ·K +Lcfo +Z + 2πtffbK +Nto

= ϕre + 2π(α+ β + tffb)K +Lcfo +Z +Nto

= ϕre + 2πλ ·K +Lcfo +Z +Nto

= 2πλ ·K + (ϕre +Lcfo +Z) +Nto

= 2πλ ·K +C∗ +Nto,
(12)

where λ is a constant for one specific frame, and it is the
sum of α, β, and tffb. Similarly,Lcfo and the real phaseϕre
are also constants for each subcarrier in the same frame and
can be measured by φ [30]. Therefore, we useC∗ to replace
the sum of ϕre, Lcfo, and Z.

Referring to [30], C∗ can be estimated by the phases
of a pair of mirror subcarriers measured at the receiver.
Thus, we sum up the phases (φ−1 and φ1) measured at
the receiver of a pair of mirror subcarriers -1 and 1 as the
following equation:
φ−1 + φ1 = 2πλ · (−1 + 1) + 2 ·C∗ +Nto,−1 +Nto,1

= 2 ·C∗ +Nto,−1 +Nto,1,
(13)

where Nto,−1 and Nto,1 represent the NLPEs of subcarrier
-1 and subcarrier 1, respectively, and Nto,−1 +Nto,1 ≈ 0 [6].
Accordingly, C∗ can be calculated approximately as:

C∗ ≈ φ−1 + φ1

2
. (14)

Here, C∗ is subtracted from the phases of all received
frames for the elimination of environmental impacts. Fig. 6
shows the phases after eliminating the environmental im-
pacts. We can observe that the processed phases across
subcarriers are evenly distributed on both sides of Y = 0
and approximately centrosymmetric.

Calculate NLPE fingerprints: After removing LPEs,
the total NLPE Nto (the NLPE fingerprint) caused by
the imperfect hardware design and the human motion is
expressed as:

Nto ≈ φE − 2πλ ·K, (15)
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Ten NLPEs caused by the hardware design

of the same device at different sampling points.

Fig. 7 The NLPEs caused by the hardware design for the
same device at different sampling times.

where φE is the normalized phases after subtracting C∗.
Similar to [28], to obtain a relatively stable NLPE finger-
print Nto and to mitigate the location impact, we employ
the deviation between the normalized phases φE and the
fitted line L to represent this steady NLPE fingerprintN st

to .
Specifically, the fitted line L is generated by connecting
two points, i.e., (−28, φE,−28) and (28, φE,28), which can
be formulated as:

L =
φE,28 − φE,−28

56
·K +

φE,−28 + φE,28

2
. (16)

Therefore, the stable fingerprint N st
to is obtained by:

N st
to = φE −L. (17)

Quantify Fingerprint Contribution and Attack Effect:
Next, we compare the contribution of hardware design
Nha and human motion Nmo on the NLPE fingerprint
to quantify the attack effect of human movement on the
NLPE fingerprint. Since the NLPE caused by the imperfect
hardware design Nha is a constant for the specific network
card [6], and N em

mo equals 0 when there is no motion in
the range [28], we thus calculate N em

ha in an empty room
without any human motion:

N em
ha +N em

mo = φE,em −Lem,
N em
ha = φE,em −Lem,

(18)

where φE,em and Lem are the normalized phases and the
fitted line in the empty room, respectively. Then, N em

ha is
obtained to represent the NLPE caused by the imperfect
hardware design in all frames. Fig. 7 shows the NLPEN em

ha
of the same device at ten different sampling times. The mul-
tipleN em

ha samples of the same device at different sampling
times are basically coincident, which demonstrates that the
NLPE caused by the hardware design is very stable.

Here, we subtract N em
ha from the stable NLPE finger-

print N st
to in each received frame to obtain the NLPE

change caused by human motion. In this regard, the NLPE
Nmo caused by human motion in each frame can be esti-
mated as:

Nmo = N st
to −N em

ha

= φE −L−N em
ha .

(19)

As shown in Eq. (19), since the greater NLPE Nmo

caused by the motion, the bigger fingerprint difference after
the motion attack, we estimate the attack effect by compar-
ing the fingerprint difference before and after the attack.
Specifically, the motion attack effect is quantified by cal-
culating the correlation coefficient between the fingerprint
after the attack N st

to (obtained by Eq. (17)) and the original
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Fig. 8 RSSI-Human Initial Speed Module framework.

fingerprint N em
ha (obtained by Eq. (18)) without human

movement. PhyFinAtt employs Pearson’s method to calcu-
late fingerprint correlations. PNst

to ,N
em
ha

is used to denote
the Pearson correlation coefficient between the attacked
fingerprint N st

to and the original fingerprint N em
ha , which

can directly reflect the motion attack effect. In particular,
the correlation coefficient PNst

to ,N
em
ha

is negatively related to
the attack effect.

5.3 RSSI-Human Initial Speed Module

Fig. 8 shows the framework of the RSSI-Human Initial
Speed Module. This module is used to choose the appro-
priate initial attack intensity (worker number and velocity)
based on the channel quality so that the attack does not
affect normal communication and cannot be detected.

Discover the Impact of Motion on RSSI: Generally,
human movements can generate two impacts on RSSI,
i.e., decreases in RSSI average values and fluctuations in
time series. The occlusion of the human body makes RSSI
attenuated, which finally results in a decrease in the av-
erage RSSI. Since the human body movement changes the
number of indoor multipaths and the path length of signal
propagation [30], RSSI is superimposed with the new path
overlap relationship [28], which leads to fluctuations in
RSSI.

Determine the RSSI Distribution Module: The impact
of human body occlusion on RSSI can be expressed by the
occlusion attenuation parameter ς [31]. In addition, FCC
Frog eye [34] proves that the RSSI, under the influence of
human motion, follows a normal distribution. Therefore,
we model the fluctuation of RSSI affected by motions as:

` = ς × `ini + N
(
0, ν2

)
, (20)

R = `−B, (21)

where `ini and ` denote the wave strength of a certain place
without or with human movement, respectively. ς is an
experimental-based parameter introduced to estimate the
occlusion impact of the human body (ς ∈ [0, 1]), and ν2 rep-
resents the variance of the normal distributionN

(
0, ν2

)
. B

is the background noise determined by the environment
and can be obtained by CSITOOL [26]. In particular, the
range of B in most cases is around 90dBm. Finally, the
RSSI value R is obtained by subtracting the background
noise B from `.

The normal communication RSSI should be larger than
−77dBm, which is the lowest value of the second grid
signal strength of Android phones and is denoted as:

R > −77,

`−B > −77,

ς × `ini + N
(
0, ν2

)
> −77 +B.

(22)
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(a) Coefficient measurement in a stu-
dent dormitory.
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(b) Coefficient measurement
in a student office.

Fig. 9 Fluctuation coefficient measurement scenarios.

Since RSSI fluctuations follow a normal distribution,
according to the three-sigma rule, the probability that RSSIs
fluctuate from ς × `ini −B − 3× ν to ς × `ini −B + 3× ν
is 0.9974. If the lowest RSSI in fluctuations meets the
communication requirement, almost all RSSIs will meet this
requirement. The fluctuation constraint can be rewritten as:

ς × `ini − 3× ν > −77 +B,

3× ν < ς × `ini + 77−B.
(23)

Thus, the relationship between the fluctuation standard
deviation ν and the initial wave strength `ini is obtained.

Determine the Model Parameters: As shown in Fig. 9,
to calculate fluctuation parameters for constructing the rela-
tionship between movement speed and RSSI, we record the
RSSI values before and after the human movement attack in
two indoor scenarios, i.e., a student dormitory (6.1× 4m2)
and a student office (16.3 × 10.4m2). In the two scenarios,
the locations P1-P4 are in line-of-sight (LOS) areas, and
the locations P5-P7 are in non-line-of-sight (NLOS) areas.
We record the RSSI values before and after the attack in
locations P1-P7, respectively. The movement direction is
perpendicular to the communication link. For each location,
the occlusion attenuation parameter ς is calculated by the
ratio of the average RSSI after the attack to the average
RSSI before the attack. The standard deviation ν is obtained
by calculating the standard deviation of the RSSI after the
attack.

These attack scenarios contain different worker num-
bers and distinct movement speeds. To study the impact
of various worker numbers and movement speeds on the
attenuation coefficient ς and the fluctuation coefficient ν
and to choose the appropriate attack intensity to perform
attack, we set the number of workers from 1 to 5 (unobtru-
sive worker number range [35]), and the average movement
speed is from 1 km/h to 12 km/h (normal movement speed
range [36]) to calculate the corresponding coefficient values.
Fig. 10 shows the heat map of the variation of the average
attenuation coefficient ς and the fluctuation coefficient ν
with different worker numbers and different movement
speeds. Specifically, the abscissa represents different move-
ment speeds, the ordinate represents the different worker
numbers, and the depth of the color denotes the average
coefficient value under the corresponding attack intensity.
Fig. 10 (a) depicts the changes of the average attenuation
coefficient ς with different worker numbers and different
movement speeds in LOS areas. We can see that when the
worker number is less than 3 and the average speed is less
than 5, the occlusion effect is significantly enhanced with
the increase of the worker number and the average speed.
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Fig. 10 The impact of various worker numbers and movement speeds on the attenuation coefficient ς and the fluctuation
coefficient ν.

TABLE 1 Model parameters in line-of-sight (LOS) areas. The first number and the second number are the number and
speed of the workers, respectively, e.g., 3Per-3 means that there are 3 workers, and the speed of each worker is 3km/h.

Parameters 1Per-3 1Per-5 1Per-10 2Per-3 2Per-5 2Per-10 3Per-3 3Per-5 3Per-10
ς 0.97 to 1 0.96 to 1 0.96 to 1 0.95 to 0.99 0.94 to 1 0.95 to 0.99 0.95 to 0.99 0.93 to 0.99 0.93 to 0.99
ν 1.87 to 2.97 1.98 to 3.15 2.46 to 3.67 2.92 to 4.07 2.95 to 4.13 2.99 to 4.25 3.02 to 4.29 3.11 to 4.35 3.13 to 4.42

TABLE 2 Model parameters in non-line-of-sight (NLOS) areas.
Parameters 1Per-3 1Per-5 1Per-10 2Per-3 2Per-5 2Per-10 3Per-3 3Per-5 3Per-10

ς 0.89 to 0.97 0.89 to 0.96 0.88 to 0.96 0.86 to 0.95 0.86 to 0.94 0.87 to 0.95 0.85 to 0.95 0.85 to 0.93 0.84 to 0.93
ν 3.03 to 4.10 3.12 to 4.25 3.22 to 4.36 3.69 to 4.67 3.76 to 4.83 3.79 to 4.91 3.81 to 5.12 3.85 to 5.17 3.87 to 5.23

TABLE 3 The RSSI applicable scope of different initial attack intensities. The unit of RSSI is dBm.
Intensity 1Per-3 1Per-5 1Per-10 2Per-3 2Per-5 2Per-10 3Per-3 3Per-5 3Per-10

Scope [−61.57,∞) [−61.07,∞) [−60.36,∞) [−58.59,∞) [−58.13,∞) [−58.03,∞) [−56.64,∞) [−56.46,∞) [−55.85,∞)

However, the continued increase in the worker number and
the average speed does not significantly affect the occlusion
effect. This is reflected in the fact that when the work
number increases to more than 3 and the average speed
increases to more than 10 km/h, the attenuation effect does
not increase significantly. A similar phenomenon can be
found in the variation of the average fluctuation coefficient
ν in NLOS areas shown in Fig. 10 (b). Therefore, we set
the worker numbers to three grades from 1 to 3, and the
moving speed to three grades of 3, 5, and 10km/h to
perform an attack of appropriate intensity.

Since the RSSI attenuation coefficients ς in different
scenarios are mostly between 0.8 and 1 [29], which are
similar to the range of ς in the above two rooms, and
the RSSI fluctuations ν caused by the same motion in
different environments are also similar [31], the parameters
calculated through these two rooms are representative and
thus appropriate for other indoor environments.

Tab. 1 and Tab. 2 show the possible values of the occlu-
sion attenuation coefficient ς and the fluctuation coefficient
ν in LOS and NLOS areas, respectively. From these two
tables, we observe that the larger worker number causes the
smaller occlusion attenuation parameter ς , which means
the occlusion effect becomes large as the worker number
increases. Meanwhile, as the number of employed workers
and their moving speed increase, the RSSI fluctuations be-
come more intense, and their standard deviation ν increases
accordingly. However, the growth rate of the standard
deviation ν gradually decreases. Compared with LOS areas,
the occlusion effect caused by the human body and the
fluctuation differences of RSSI are more significant in NLOS
areas.

Online: Real-time Speed Adjust Module
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Reduce 
movement speed

Keep movement 
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slide of the sliding window

Attack ends?
Detect the average RSSI in 

the sliding window
No

Next sliding window

Fig. 11 Real-time Speed Adjust Module framework.

Therefore, in order not to affect the normal communi-
cation of all devices and make the attack undetected, we
only need to ensure that the devices affected by motions
in NLOS areas can meet the communication requirements.
Such communication conditions are sufficient to meet the
normal communication of all devices. Consequently, com-
bining the parameter relationship in Eq. (23) and the possi-
ble parameter values under NLOS areas in Tab. 2, the appli-
cable RSSI range for each attack intensity is given in Tab. 3.
We observe that when each of the three workers moves at
a speed of 10km/h, the attack intensity is the largest, and
the RSSI (near the attacked AP, < 50cm) required by the
environment is the highest, i.e., −55.85dBm.

Output the Initial Attack Intensity: By substituting the
RSSI value of the Fresnel Zone near the attacked AP into
Tab. 3, we can determine the initial attack intensity accord-
ingly. Generally, the maximum allowed intensity is chosen
as the initial attack intensity to perform the attack. In ad-
dition, since the human movement speed is approximately
positively correlated with the RSSI fluctuation variance, the
worker’s speed is not limited to 3, 5, or 10km/h but can
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Fig. 12 Real-time Fingerprint Attack system framework.

be any value less than the maximum speed that meets the
condition.

5.4 Real-time Speed Adjust Module
If the workers move too fast during the attack, normal
communication may be affected. To address this issue, we
design the Real-time Speed Adjust Module to timely mon-
itor the channel quality and adjust the workers’ movement
speed. As shown in Fig. 11, an overlapped sliding window
algorithm is first used in this module to detect the real-time
RSSI in the environment. The size and step of the window
are determined by the sampling rate S, the motion-related
time factor tmov , and the sliding constraint parameter ρ,
which can be expressed as:

Wsi = S × tmov, (24)
Wst = ρ× S × tmov, (25)

where Wsi and Wst denote the size and the step of the
sliding window W , respectively. The sliding constraint
parameter ρ is set to constrain the violent RSSI fluctuations
caused by the instantaneous speed change to affect normal
communication when the movement crosses two sliding
windows. Based on empirical knowledge, tmov is set to
0.5s, and ρ is set to 0.5. As shown in Fig. 11, in each sliding
window during the attack, we calculate the average RSSI
collected by the worker’s smartphone. If the average RSSI
in one window is greater than the normal threshold, the
worker keeps the moving speed. Otherwise, the worker
reduces the moving speed until the condition is met. Sim-
ilar to the RSSI-Human Initial Speed Module setting, the
normal communication threshold is set to −77dBm.

5.5 Real-time Fingerprint Attack System
Fig. 12 shows the attack system framework. Here, we
introduce the movement range of the workers, the starting
and ending conditions, and the specific execution process
of the attack.

Go to Fresnel Zone and Obtain AP RSSI: The Fresnel
Zone is the ellipsoidal area near LOS where the electro-
magnetic energy is most concentrated. Obstacles in the
Fresnel Zone cause strong scattering of the transmitted
electromagnetic waves. Therefore, the Fresnel Zone has
the greatest influence on the signal, and we perform the

movement attack in the Fresnel Zone. Specifically, we first
go to the Fresnel Zone near the attacked AP (< 50cm) to
measure its RSSI.

Then, we obtain the channel information of the attacked
AP to determine the initial attack intensity. Since there
are usually multiple APs in the same indoor environment,
the RSSI value of the nearest AP (the attacked AP) is not
necessarily the maximum value. Generally, the RSSI value
of the nearest AP is in the top three among all indoor
APs. Thus, to obtain the real attacked AP information, we
collect the channel information corresponding to the top
three RSSIs near the attacked AP (< 50cm in the Fresnel
Zone).

Comprehensively Determine Initial Attack Intensity:
Since we do not know which of the top three RSSIs corre-
sponds to the attacked AP RSSI, to ensure that the attack
process does not affect normal communication, all channel
constraints corresponding to the top three RSSIs should be
met. According to the RSSI-Human Initial Speed Module,
the lower RSSI in the model input corresponds to the
weaker attack intensity in the model output. Therefore, we
substitute the minimum of the three obtained RSSIs into
this module, and the output attack intensity will be the
lowest, and it will be used as the initial attack intensity.

It is worth noting that the average movement speed
determined in the initial attack intensity is not constant,
but employed workers need to roughly maintain this
movement speed to perform the initial attack. Since all
attacks end within one minute, workers can maintain an
approximately constant movement speed by maintaining a
relatively constant stride frequency and stride within one
minute. Furthermore, the speed deviation between the set
value and the actual value will not affect the attack result
since the Real-time Speed Adjust Module timely calibrates
the movement speeds of workers.

Set Co-channel Interference to Force Re-verification:
The attack target of PhyFinAtt is the verification process of
PHY information-based authentication protocols. As com-
munication environment fluctuations cause channel hop-
ping, which can further lead to devices entering the veri-
fication process, appropriate channel environment changes
are necessary to cause the channel hopping of the attacked
devices and re-verification. Since WiFi nodes automatically
change the channel when their channel is severely inter-
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Fig. 13 The movement range of each worker.

fered with by co-channel interference (CCI) (CCI is caused
by WiFi nodes with the overlapped frequency spectrum
competing for channels [28]), and the channel hopping can
cause reconnection and re-verification [37], we use CCI to
force the attacked device to change channel and further
enter verification process so that the attacks can be easily
performed.

Specifically, we set the CCI according to the channel
information of the obtained top three RSSIs. For each
channel corresponding to the top three RSSIs, we use one
interference AP with the overlapping channel and one
interference client to generate CCI through large-scale data
communication on the link formed by this interference AP
and the client. To generate fast channel hopping for the
attacked AP, the traffic rate of each interference link is set
to 12MB/s based on practical experience.

Determine Attack Movement Range and Moving
Method: Since moving in an area not exceeding 20% of the
periphery of the first Fresnel Zone causes greater scattering
of electromagnetic waves [38], to enhance the attack effect,
the workers’ movement range should be within this area.
Specifically, as shown in Fig. 13, the first worker is at the
center of the connection between the AP and the client.
If environmental conditions permit, the second worker and
the third worker are getting closer and closer to the attacked
target in the Fresnel Zone. The movement range of each
worker is related to its position in the Fresnel Zone, which
can be expressed as:

U =

√
ζGAPGLA

Gall
, (26)

µ = 2× 1.2× U, (27)

where U is the radius of the first Fresnel Zone, and ζ
represents the wavelength of the WiFi signal, which is
about 13.4cm in the 2.4GHz band. GAP and GLA denote
the distances between the moving subject and the attacked
AP and the moving subject and the attacked client, re-
spectively. Gall is the total distance between the AP and
the client. µ expresses the length of the optimal worker
movement range, which can exceed 20% of the first Fresnel
radius. Fig. 13 shows that the workers’ movements are
perpendicular to the connection link between the AP and
the client.

In particular, in the PhyFinAtt attack system, whether
the attack method is a same path walk or a random
path walk, as long as it satisfies the movement attack is
performed near the first Fresnel Zone, it is valid. This is

because different walk methods, i.e., a same path walk and
a random path walk, have different path impacts, which
may cause different electromagnetic interference on the
PHY fingerprint. However, the key of the PhyFinAtt attack
is not to change the PHY fingerprint into a fixed form but
to make the stable PHY fingerprint unstable and reduce
the similarity between the attacked fingerprint and the
original fingerprint. Therefore, the fingerprint shape after
being attacked is not the key point to attack. As long as the
attacked fingerprint is not similar enough to the original
fingerprint, the attack is considered successful.

Perform Attack and Stop Condition: The attack tar-
get of PhyFinAtt is the verification process of the PHY
information-based authentication protocols rather than the
normal communication process. Therefore, even if the first
Fresnel Zones of different connection links overlap, the un-
related links of normal communication will not be affected
by the PhyFinAtt attack. Only the target that is affected
by the CCI and produces the channel hopping to enter
the verification process will be attacked. Thus, observing
the channel hopping of the attacked device is a sign of the
attack’s start.

After determining the workers’ movement ranges, the
attack is performed. During the attack process, the Real-
time Speed Adjust Module monitors the workers’ speeds
from beginning to end to avoid affecting normal communi-
cation much. The adjustment of the movement speed is not
determined by the state of the channel hopping but by the
average RSSI in the environment. When the average RSSI
in the environment is below the threshold, the movement
speed will be reduced to mitigate the impact of motions on
communication.

Each worker can observe the channel-hopping state of
the attacked AP through the smartphone in his hand. Once
the attacked device completes channel hopping, the re-
verification process of the protocol will start, and different
workers begin to perform the movement attack. Since the
re-verification process usually completes within a few sec-
onds and there is no reconnection chance when fingerprint
re-verification fails, PhyFinAtt stops the fingerprint attack
10s after all channel re-verification processes start.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the pro-
posed PHY fingerprint attack framework (i.e., PhyFinAtt).
Specifically, we first show the attack performance using two
measures (Pearson correlation coefficient and attack success
ratio). Then, we discuss the impacts of different factors on
the attack effect.

6.1 Experimental Setting
Hardware Design: As shown in Fig. 14, in our experiments,
we use a Thinkpad 420i laptop equipped with the Intel
5300 NIC and another Thinkpad 420i laptop equipped with
the AX210 NIC as the fingerprint collectors to gather PHY
information-based fingerprints of various testing devices,
including APs, laptops, cellphones, and smartwatches.

Software Implementation: We modify the driver of the
NICs in the fingerprint collectors and install two different
CSI collection tools, i.e., CSITOOL [26] in the Ubuntu 14.04
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Fig. 14 Part of the tested WiFi devices.

TABLE 4 The device types of the collected fingerprints.
Device type Quantity Device type Quantity

Laptop with Intel 5300 12 Xiaomi Mi-9 2
Laptop with AR9580 4 MEIZU 15 1
Laptop with N 1000 5 OnePlus 5 2
TP-link WDR7500 3 OnePlus 6 1
TP-link WDR4310 1 Samsung Galaxy S6 1
Mercury MW325R 1 Huawei Mate30Pro 2

Xiaomi Mi-2s 2 Moto 360 Watch 1
Huawei Mate20Pro 1 WAAWO Watch 1

operating system and PicoScenes [39] in the Ubuntu 20.04
LTS operating system to collect CSI for fingerprinting.

Fingerprint Acquisition Before and After Attack: It is
worth noting that since there is currently no public data set
about various PHY fingerprints of different devices [14],
and there is no public fingerprint sample after a movement
attack [40], we can only choose a self-built data set. To
compare the fingerprints before and after the attacks, we
use 40 WiFi devices, including 5 APs and 35 mobile clients,
to collect the corresponding NLPE fingerprints. The mobile
clients include various types of laptops, cellphones, and
smartwatches. Tab. 4 shows the specific types and numbers
of the adopted devices. In our experiments, we use the
ICMP Ping method to collect raw CSIs, and the frame
sampling rate is set to 100 frames per second. For each AP
or client before and during the attack, we collect data for
ten seconds every time, i.e., collecting 1000 CSI frames at
one time.

6.2 Attack Performance
Performance Measures: We adopt two measures to evalu-
ate the attack performance: the Pearson correlation coefficient
(denoted by P ) between the fingerprints of the same device
before and after the attack to express the post-attack simi-
larity and the attack success ratio (ASR), which is the fraction
of legal devices that cannot access WLAN after the attack
to denote the attack accuracy. Here, we define the ASR as
follows:

ASR =
ξde
ξwh
× 100%, (28)

where ξde denotes the number of fingerprints that are
denied in the authentication process, and ξwh denotes the
total number of testing fingerprints.

Pearson Correlation Coefficient: In this experiment,
we use 40 different WiFi devices to evaluate the attack
performance, and these devices are described in Tab. 4.
We perform our experiments in a dormitory shown in

FEB

AC

D
G H

P1

P2 P3

P4

P5

Fingerprint 
collector

Master 
mode

Fingerprinted 
device

P6

P7

Corridor

Fig. 15 One fingerprint collector and seven tested posi-
tions of the fingerprinted device in the dormitory (6.1 ×
4m2).

Fig. 15, and the physical side of this dormitory is 6.1×4m2.
Here, we take the random attack as a baseline method, in
which the workers randomly move in the dormitory and
consider a reference scenario where there is no attack. For
each device, we employ 6 volunteers to perform various
movement attacks and collect the fingerprint sample data
50 times at different locations (P1 to P7 in Fig. 15) for each
attack scenario. Totally, 3 × 40 × 50 fingerprint samples
are collected in our experiment. As described in Sec. 6.1,
we collect ten seconds of CSI data for each fingerprint
sample, and the sampling rate is 100 frames per second.
Thus, each fingerprint sample contains 1000 CSI frames. To
comprehensively measure the NLPE fingerprint changes,
we use the average fingerprint of 1000 frames as the device
fingerprint in one sampling.

Fig. 16(a) shows the Pearson correlation coefficient (or
the similarity) between the fingerprints of the same device
before and after the attacks. Here, we vary the number of
workers from 1 to 3 and report the average results over
40 devices. The reference fingerprints before attacks are
collected from the same location in the empty room (the
room in Fig. 15). We can observe that the proposed Phy-
FinAtt attack always achieves better performance (lower
fingerprint similarity after the attack) compared with the
random movement attack, and the average correlation
coefficient after the PhyFinAtt attack can be lower than
76%. For the scenario where there is no attack, the NLPE
fingerprint remains constant. Besides, the random attack
cannot change the NLPE fingerprint significantly (the aver-
age correlation coefficient is 92.06%), which shows that the
NLPE fingerprint is relatively stable and robust to normal
indoor activities. In addition, Fig. 16(a) shows that the
similarity between the same device fingerprints before and
after the attack becomes lower as the number of workers
increases. Furthermore, compared with the random move-
ment attack, PhyFinAtt can improve the attack performance
more significantly as the number of workers increases. This
clearly demonstrates that the proposed PhyFinAtt frame-
work is effective, and it can significantly change the NLPE
fingerprint.

Attack Success Ratio (ASR): Next, we discuss the attack
success ratio of the proposed attack framework. We first
establish the legal fingerprint library for 40 WiFi devices.
This library contains 50 fingerprint samples for each device,
and these samples are collected in the unmanned student
dormitory. For each attacked fingerprint sample, we cal-
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(b) Comparison of the attack accuracy for different
attack methods when the attacked device is different.
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(c) Comparison of the attack accuracy under different
attack intensities (A1-A9: different intensities).
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(d) Comparison of the minimum RSSI condition for nor-
mal communication under different attack intensities.

Fig. 16 Comparison of the performance of different attack methods.

culate the average similarity coefficients Pavg between this
sample and the 50 fingerprint samples of every device in
the legal fingerprint library. If any Pavg exceeds 90%, we
consider the device that generates this fingerprint sample
to be legal, and it can access the WLAN (the attack is unsuc-
cessful). Otherwise, the corresponding device is considered
to be illegal, and the attack is successful. Then, for each
device, we collect 50 fingerprint samples (i.e., ξwh = 50
) under each attack method and calculate ASR based
on Eq. (28). The results are shown in Fig. 16(b). For the
scenario where there is no attack, the average ASR of all
devices is 3.42%, and the ASRs of APs and smartwatches
are lower than other devices whose fingerprints are more
stable. Similarly, the average ASR of all devices is not
high under the random attack. This demonstrates that the
NLPE fingerprint is stable and robust to normal activities.
However, under our proposed attack, the average ASR of
all devices boosts to 97.53%. This clearly proves that the
proposed PhyFinAtt framework can significantly destroy
the stability of NLPE fingerprints and affect their normal
verification, which finally leads to the result that legal
devices cannot access the WLAN.

Attack Intensity Impact On Attack Accuracy and RSSI
Requirement: To further understand the impacts of the
attack intensity on the attack effect and the RSSI require-
ment for normal communication, we set different attack
intensities and test the attack accuracy ratio (ASR) and the
minimum RSSI value required by the environment in the
corresponding intensity. Specifically, Fig. 16(c) shows the
impact of different attack intensities on the attack accuracy.
The X-axis represents different attack intensities, and A1-A9
denote the nine different attack intensities from 1Per-3 to
3Per-10 shown in Tab. 1. The Y-axis represents the average
attack accuracy ratio. As the attack intensity increases, the

TABLE 5 Performance improvement of the proposed two
different speed adjustment mechanisms.
Channel evaluation index Without adjustment With adjustment

Packet loss ratio 5.7% 1.8%1.8%1.8%
RSSI < -77dBm ratio 26.7% 5.2%5.2%5.2%

ASR increases significantly, but the increase rate gradually
decreases. Besides, Fig. 16(d) depicts the impact of different
attack intensities on the minimum RSSI value required by
the environment for normal communication. The constraint
object of the minimum RSSI is the area near the attacked AP
(< 50cm) in Fresnel Zone. From Fig. 16(d), we can observe
that as the attack intensity increases, the minimum RSSI
requirement for the normal communication of all devices
also increases. Therefore, to perform an effective attack
without affecting normal communication, PhyFinAtt chose
the maximum attack intensity allowed by the environment
to perform the fingerprint attack.

Channel Quality Protection: The RSSI-Human Initial
Speed Module and the Real-time Speed Adjust Module
in our proposed attack framework can help protect the
channel quality. To verify this point, we remove the two
modules from PhyFinAtt and then compare the corre-
sponding channel quality with that when PhyFinAtt is
performed. Specifically, for all NLOS devices in the student
dormitory shown in Fig. 15, we use the ICMP Ping method
and CSITOOL [26] to record the average packet loss ratio
and the ratio of RSSI lower than -77dBm, respectively. The
results are shown in Tab. 5. We can observe that these two
attack intensity control modules can significantly reduce
the negative impact of human motions on channel quality.
Through initializing the worker number and speed and
adjusting real-time speed, the average packet loss ratio of
WiFi devices located in NLOS areas is obviously reduced.
In addition, the RSSI in the corresponding location is also
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TABLE 6 The performance of PhyFinAtt on different PHY
information-based fingerprints.

Fingerprint type ASR
CFO-based fingerprint 98.25%
CSI-based fingerprint 98.74%

CSITE framework-based fingerprint 98.61%
RSSI-based fingerprint 99.23%

Phase error range-based fingerprint 97.89%

significantly improved. The results demonstrate that the
two attack intensity control modules ensure that the PhyFi-
nAtt framework does not affect the normal communication
of all devices while attacking the NLPE fingerprint.

6.3 Generalization
The proposed attack system PhyFinAtt is effective not only
for the NLPE fingerprint but for all the PHY information-
based fingerprints propagated through wireless channels.

In order to evaluate the generalization of the PhyFi-
nAtt system, we report the ASRs of PhyFinAtt on five
other PHY fingerprints adopted by state-of-the-art authen-
tication protocols. Specifically, we extract the CFO-based
fingerprint [5], the CSI-based fingerprint [7], the CSITE
framework-based fingerprint [8], the RSSI-based finger-
print [12], and the phase error range-based fingerprint
[9], respectively, as the attacked targets to evaluate the
attack effectiveness of PhyFinAtt on different kinds of PHY
fingerprints. The fingerprint collection before and after the
attack and the ASR calculation method in this part are the
same as that introduced in Sec. 6.2.

Tab. 6 shows the ASRs of PhyFinAtt for various PHY
information-based fingerprints. We can observe that PhyFi-
nAtt has good scalability for different attack targets, and
it can achieve good performance on all types of finger-
prints. The ASR for each fingerprint can reach more than
97.89%. The results also demonstrate that the attack on the
electromagnetic field in Fresnel Zone effectively destroys
the authentication fingerprints of different protocols and
further affects their normal verification.

6.4 Deep Dive into PhyFinAtt
The main purpose of this section is to understand the
impact of various factors on the attack effect of the PHY
fingerprints. The performance evaluation indicators in this
section are the correlation coefficient P and ASR intro-
duced in Sec. 6.2. Furthermore, in this part, the employed
worker number in different experiments is one.

6.4.1 Attack Effect of Different Motions
To explore which motions can effectively change the PHY
fingerprint, we add three different types of activities, i.e.,
static activity, in-place activities, and moving activities, to
test their attack effectiveness. Fig. 17 shows the sketch of
different attack activities. The static activity (standing) is
used as a reference state to observe the impact of the static
human body on the PHY fingerprint. The in-place activities
and the moving activities are used to observe the change of
the PHY fingerprint when the position remains unchanged
or changed.

Fig. 18 depicts the degree of impact of different activities
on the PHY fingerprint (P ) and the probability of a success-
ful attack (ASR). From Fig. 18, we observe that the static

Standing Walking Running

Push-ups Lift dumbbells SquatsStoop-down

Sit-ups

Moving activities Static activities

Fig. 17 Attack activity set: one reference static activity
(standing), five in-place activities, and two moving activ-
ities.

In-place activities
Moving activities

Static activities for comparison 

Fig. 18 The degree of impact of different activities on the
PHY fingerprint and the probability of a successful attack.

human body basically does not change the PHY fingerprint,
which shows that the change of the PHY fingerprint does
not come from the occlusion of the human body. The impact
of in-place activities on the PHY fingerprints is also not
obvious. The similarity of fingerprints before and after the
attack is mostly around 85%, so the success rate of the
attack (ASR) is not high. This illustrates that the inten-
sity of in-place activities without position change is not
sufficient to change the PHY fingerprint. Compared with
these two types of activities, the moving activity (running)
can significantly change the PHY fingerprint and produce
a higher ASR due to the rapid positional movement.

6.4.2 Attack Effect of Different Regions

To verify the impact of the moving range on the attack effect
and to test the attack performance in a larger sensing range
outside the first Fresnel Zone, we set five different moving
ranges to observe the post-attack similarity and the ASR
in the corresponding range. A single worker is located in
the center of the first Fresnel Zone. Its running direction is
perpendicular to the WiFi connection link, and the running
range is different.
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TABLE 7 The impact of different attack ranges on the
attack effect of PhyFinAtt.

Metrics Within Zone 120%120%120% 200% 280% 360%
Correlation 81.43% 78.81%78.81%78.81% 81.87% 83.54% 88.73%
ASR 91.37% 95.47%95.47%95.47% 89.75% 84.16% 64.24%

TABLE 8 The attack effect of various attack methods in
different frequency bands.

Band No Random PhyFinAtt
2.4 GHz 99.54%, 2.98% 94.12%, 10.98% 78.81%78.81%78.81%, 95.47%95.47%95.47%
5 GHz 99.63%, 3.07% 94.89%, 10.43% 79.37%79.37%79.37%, 93.56%93.56%93.56%

Tab. 7 shows the impacts of different attack ranges on
the PHY fingerprint. Within Zone represents the range of
running movement within the first Fresnel Zone, and differ-
ent numbers mean different running ranges. For instance,
280% denotes the running range not exceeding 180% of
the periphery of the first Fresnel Zone. From Tab. 7, we
observe that as the attack range increases, the ASR first
increases slowly and then decreases continuously. When
the running range does not exceed 20% of the periphery of
the first Fresnel Zone, the attack has the greatest impact on
the PHY fingerprint, and the fingerprint similarity before
and after the attack (the post-attack similarity) is only
78.81%. This is because when the running range is small,
the displacement generated by the human body is also
small and has less effect on the signal ToF and on the
PHY fingerprint. On the other hand, since most of the
electromagnetic energy is concentrated in the first Fresnel
Zone [41], when the running range is too large and far away
from the first Fresnel Zone, the impact of the movement on
the distribution of electromagnetic energy will be reduced,
and the corresponding effect on the PHY fingerprint will
also be reduced accordingly.

Nevertheless, even if the moving range exceeds 2.8
times the diameter of the first Fresnel Zone, the attack
accuracy can still reach 84.16%, which shows that a rela-
tively satisfactory attack effect can still be achieved with a
larger moving range. Furthermore, since the size of the first
Fresnel Zone is positively related to the distance between
the transmitting and receiving antennas, when the indoor
environment is large, the effective attack range will also be
larger.

The experimental results show that the PHY fingerprint
is relatively stable. When the attack occurs at an NLOS
area, the movement of the human body cannot significantly
change the PHY fingerprint. Thus, in order to achieve the
best attack effect when there is a complex multipath in the
testing room, the PhyFinAtt system needs first to calculate
the location of the first Fresnel Zone and perform the
corresponding attack near this zone.

6.4.3 Attack Performance in 5GHz Band
To test the effectiveness of PhyFinAtt in different frequency
bands, we next evaluate PhyFinAtt in the 5GHz frequency
band. The experimental setting here is the same as that for
the 2.4GHz.

Tab. 8 shows the performance of various attack methods
in different WiFi bands. The two numbers in each cell
denote the post-attack similarity and the attack success
ratio, respectively. Although 5GHz and 2.4GHz have dif-
ferent subcarrier frequencies and wavelengths, the same

TABLE 9 The impact of worker heights on the attack
effect of PhyFinAtt.

Metrics <160cm 160∼170cm 170∼180cm >180cm>180cm>180cm
Correlation 80.13% 79.54% 78.13% 75.53%75.53%75.53%
ASR 91.62% 95.36% 96.13% 96.79%96.79%96.79%

TABLE 10 The frequency and probability that the RSSI
value of the nearest AP is in the top three of the list.

Device 20mW 35mW 50mW Avg
TP-link WDR7500 28/30 30/30 30/30 97.78%97.78%97.78%
TP-link WDR4310 29/30 30/30 30/30 98.89%98.89%98.89%
Mercury MW325R 27/30 29/30 30/30 95.56%95.56%95.56%

attack method has similar attack performance in different
frequency bands. The results also show that the proposed
PhyFinAtt can always achieve the best performance.

6.4.4 Attack Effect of Different Workers
To evaluate the effect of the workers’ heights, we invite 10
volunteers with different heights to perform the PhyFinAtt
attack. The ten volunteers include seven males and three
females. The height distribution of these volunteers is two
people below 160cm, three people from 160cm to 170cm,
three people from 170cm to 180cm, and two people above
180cm.

Tab. 9 describes the effect of different worker heights
on the attack performance. Apparently, Tab. 9 shows taller
workers can produce better attack results. However, the
effect of human heights on the attack is not significant. A
worker with a height of less than 160cm can still effectively
change the PHY fingerprint and achieve a high ASR when
she is running.

6.4.5 RSSI Value of the Nearest AP
To verify that, in most cases, the RSSI value of the nearest
AP ranks among the top three RSSI values of all indoor
APs, we adjust the transmit power of various recognition
APs and measure the RSSI value in the nearby area to rank
its RSSI of all indoor APs. Since the transmit power of
indoor APs usually does not exceed 50mW, the transmit
power of various recognition APs is set to 20mW, 35mW,
and 50mW, respectively.

Tab. 10 shows the frequency and probability that the
RSSI value of the nearest AP (different type APs) is in the
top three of the list. The numerator and denominator in
each cell represent the top three times of RSSI intensity
and the total number of measured times, respectively. For
example, 28/30 represents the RSSI value of the TP-link
WDR7500 AP ranks in the top three among all indoor APs
in 28 of the 30 measurements. This clearly shows that the
RSSI of the nearest AP is able to rank among the top three
RSSIs of all indoor APs even when the transmit power is
set to a low level (20mW). This is because the maximum
transmit power of indoor APs is usually set below 50mW,
and the signal strength attenuates rapidly with increasing
transmission distance.

6.4.6 Attack Performance under Different Distances
In this experiment, we evaluate the effect of the distance
between the test position and the transmitter on the attack
performance. Specifically, we vary the distance from 1m
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TABLE 11 The impact of different distances to the trans-
mitter on the attack effect of PhyFinAtt.

Metrics 1m 2m 3m 4m 5m5m5m
Correlation 80.58% 78.49% 77.49% 76.54% 94.33%94.33%94.33%

ASR 92.56% 95.61% 96.12% 96.97% 11.87%11.87%11.87%
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Fig. 19 Attack results of PhyFinAtt to different IEEE
802.11 standards and different operating systems.

to 5m and record the corresponding similarity P and the
ASR. The results are shown in Tab. 11.

As shown in Fig. 13, the distance between transmitter
A and receiver C is 4m. This means that when the worker
is 5m away from transmitter A, he is 1 meter to the left
of receiver C, which is outside the first Fresnel Zone. The
results in Tab. 11 demonstrate that when the worker is in
the Fresnel Zone, the distance changes between the worker
and the transmitter have no significant effect on the attack
performance, and once the worker performs the attack
outside the Fresnel Zone, the attack performance will drop
significantly.

6.4.7 Robustness to Different 802.11 Standards and Dif-
ferent Operating Systems

To further demonstrate the effectiveness of PhyFinAtt to
different IEEE 802.11 standards and different operating sys-
tems, in addition to CSITOOL (working in Ubuntu 14.04),
we also employ the PicoScenes [39] platform (working
in Ubuntu 20.04 LTS) to collect the CSI data in different
IEEE 802.11 standards, i.e., 802.11a/g/ac/ax and test the
corresponding attack performance of PhyFinAtt to different
IEEE 802.11 standards and different operating systems. The
settings in the experiment, except for different IEEE 802.11
standards and different CSI collection tools, are the same as
those presented in Sec. 6.2.

Fig. 19 shows the attack results of PhyFinAtt to different
IEEE 802.11 standards, including the post-attack similar-
ity and the attack accuracy ratio. We can observe that
PhyFinAtt has similar and satisfactory attack effects on
different IEEE 802.11 standards, which reflects similar post-
attack similarities and attack success ratios. This clearly
demonstrates that the PhyFinAtt system is not only valid
for IEEE 802.11n standard but also robust to various IEEE
802.11 standards. Furthermore, since the used Picoscenes
platform is installed on the Ubuntu 20.04 LTS operating
system, these experiment results clearly show the strong
compatibility of PhyFinAtt with the new version of the
operating system.

Fingerprint Attack Defense Mechanism
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Wait for the amplitude 
fluctuation to decrease 

Record NIPE 
fingerprint

Wait for the amplitude 
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Record this 
NIPE fingerprint 
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fingerprints are the 

same?

Yes No Yes No

Yes
No

Fluctuation>THst?

Fig. 20 The proposed defense mechanism.

TABLE 12 Performance of the defense mechanism.
Attack approach No defense With defense
Random attack 12.25% 7.34%7.34%7.34%

PhyFinAtt attack 97.53% 13.25%13.25%13.25%

7 DEFENSE MECHANISM

To deal with attacks similar to PhyFinAtt, we finally pro-
pose a practical defense mechanism, and its framework
is shown in Fig. 20. Without any additional equipment
or system modifications, this mechanism is only based
on the CSI amplitude fluctuation threshold. Since the CSI
amplitude fluctuation caused by human movements has
an approximately positive correlation with the NLPE fin-
gerprint changes caused by human movements, the degree
of the NLPE change can be directly controlled by limiting
the CSI amplitude fluctuation. As shown in Fig. 20, we
continuously collect the device NLPE fingerprints (sam-
pling rate < 2Hz) many times when the CSI amplitude
fluctuation is less than a threshold THst. If the collected
NLPE fingerprints in the last two times are the same (sim-
ilarity P > 96%), we will output this fingerprint to match
the legal fingerprint library. This mechanism effectively
constrains that the output NLPE fingerprints are all in
a stable state. According to experimental experience, this
amplitude fluctuation threshold THst in our experiment is
set to 4.

Tab. 12 shows the performance of the proposed defense
mechanism. We can see that the defense mechanism sig-
nificantly decreases the ASRs under various movement
attacks. Specifically, under the PhyFinAtt attack, the ASR
decreases from 97.53% to 13.25% when the proposed de-
fense mechanism is applied. The results demonstrate that
the proposed defense mechanism can significantly improve
the robustness of the PHY fingerprint-based authentication
protocols to human movement attacks.

8 CONCLUSION

In this paper, we propose a novel undetectable attack
framework PhyFinAtt, based on which the attacker can ef-
fectively attack the PHY information-based WiFi authenti-
cation protocols. By undermining the unique authentication
fingerprints derived from the PHY layer, PhyFinAtt makes
legal devices unable to match the legal fingerprint library
and unable to access the WLAN, which finally results in the
paralyzing of the WLAN. Through the advanced setting of
attack intensity and the real-time movement speed adjust-
ment during the attack process, PhyFinAtt can effectively
change the authentication fingerprint in an undetected way
without affecting normal communication. We prototype
and evaluate our proposed attack via extensive real-world
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experiments. The results demonstrate the superiority of
PhyFinAtt in terms of making changes in fingerprints and
attack accuracy. Compared with random movement at-
tacks, PhyFinAtt can increase the ratio of successful attacks
by 85.28%. To mitigate attacks similar to PhyFinAtt, a
practical defense mechanism based on the CSI fluctuation
threshold is proposed without involving any additional
equipment. With this mechanism, the ASR is reduced to
13.25%, and the robustness of the PHY fingerprint-based
authentication protocols to human movement attacks is
significantly improved.
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