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KeystrokeSniffer: An Off-the-Shelf Smartphone Can
Eavesdrop on Your Privacy from Anywhere

Jinyang Huang, Jia-Xuan Bai, Xiang Zhang∗, Zhi Liu, Yuanhao Feng,
Jianchun Liu, Xiao Sun, Mianxiong Dong, and Meng Li∗

Abstract—With mobile phones becoming increasingly prevalent
and embedding high-quality microphones, attackers have the ability
to employ these microphones to eavesdrop user’s keyboard input.
However, existing work usually assumes that keystroke eaves-
dropping is performed against known environments and victims,
which inevitably makes attack systems lack generalization. To
reveal the real threat of the acoustic signal-based attack strategy,
this paper proposes a keystroke eavesdropping algorithm called
KeystrokeSniffer, which is robust to unknown input environments
and unknown victims. In particular, to mimic the real input
environment of victims, an environment estimation algorithm is
first designed by extracting the timbre-related characteristics to
predict the keyboard type and identifying large-size key data
from collected unlabeled samples to estimate the 3D microphone
coordinates. Then, by imitating unknown environments and victim
data, this algorithm achieves effective keystroke eavesdropping with
a small training set. By further considering the commonalities of
different keystroke habits, a robust feature extraction method that
reflects the keystroke location is adopted to reduce the impact
of individual input habits. Extensive experimental results using
various commodity smartphones indicate that the scheme is capable
of predicting keyboard input accurately under different unknown
scenarios. Specifically, even when both the victims and keyboards
are unknown, KeystrokeSniffer can still achieve high Top-5 accuracy,
reaching 79.5% in predicting keystrokes and 96.7% in predicting
meaningful words, which demonstrates KeystrokeSniffer has ex-
cellent generalization capabilities. By setting different parameter
values of various impact factors, e.g., noise and hand length factors,
the strong robustness of the system is demonstrated, which proves
that KeystrokeSniffer can violate privacy in real situations.

Index Terms—Acoustic sensor, keyboard snooping, side channel
attack, environment robustness, input habit robustness.

I. INTRODUCTION

A. Backgrounds and Motivations

H IGH-PRECISION microphones are now widely equipped
in various off-the-shelf smartphones for human-computer

interaction [1]. While they provide users with convenience, they
also pose significant risks of privacy leakage. Both user behavior
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and privacy with a specific sound can be threatened by side-
channel attacks based on acoustic signals. Among such privacy
types, input via the keyboard, as one of the main ways for
users to operate electronic devices, usually involves a variety
of privacy [2], including passwords and plaintext content [3].
As a result, acoustic eavesdropping on keyboard input content
has become a worthy focus in current research.

Some pioneer works focused on the distinctive timbre of
different keystrokes and manually extracted frequency domain
features from the acoustic signal for classification [4]–[7].
However, most frequency-domain features that reflect keystroke
timbre usually change with the typing habits and the keyboard
type. These factors inevitably leads to a lack of robustness
in these keystroke eavesdropping systems. Giallanza et al. [8]
used microphone arrays and deep neural networks to extract
features from keystroke sounds for the keystroke classification
task, which tried to solve the robustness problems caused by
manually extracted features. However, this scheme required
multiple smartphones to collect data to achieve satisfactory
performance and relied on large-scale training data, which made
it difficult to implement.

Another crucial problem of the above works is that they can
only perform keystroke eavesdropping in some known input
environment and build models from the existing training set.
However, in practical situations, attackers who initiate side-
channel attacks are often faced with unknown input environ-
ments and a lack of training samples. Furthermore, unknown
environments significantly downgrade the performance of these
works. Although Cecconello et al. [9] presented an algorithm for
keystroke eavesdropping when the keyboard type is unknown, it
can only accommodate a limited set of keyboard candidates and
did not consider the case when the relative position of the micro-
phone to the keyboard was changed. A keystroke eavesdropping
algorithm that is robust to unknown input environments is a
research hotspot in both academia and industry.

B. Challenges and Contributions

Two major challenges need to be formally addressed before
realizing a practical acoustic signal-based side-channel attack.
• Unfamiliar input environments: In eavesdropping the user

keystroke process, sound-receiving devices often face un-
familiar environments. In particular, the placement of the
microphone is random, and the attacked keyboard type
is unknown, which results in the performance downgrade
of state-of-the-art methods that rely on fixed positions
of sound-receiving equipment and known keystroke types.
Therefore, it is challenging to accurately identify a user’s
keystrokes in an unfamiliar environment.
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• Different keystroke habits: Different subjects have different
keystroke habits. Some people hit keys lightly and slowly,
while others hit keys hard and fast. This results in signifi-
cant differences in the sound signals generated by different
subjects hitting the same keys. Thus, how to deal with the
distinct sound samples of the same key caused by different
keystroke habits to achieve accurate keystroke recognition
becomes a question worthy of consideration.

To address the existing challenges in related works, this paper
puts forward a side-channel attack to accomplish keystroke
snooping when keyboards and victims are both unknown. Instead
of collecting a large amount of keystroke data from different
victims in different input environments for fitting or for ad-
versarial learning to filter out environmental and input habit
effects, which take a long time to collect data, have a huge
amount of calculations, and thus are difficult to implement in real
scenarios, the proposed innovative approach uses several large-
size keys with obvious timbre distinctions to identify different
environment parameters in an unfamiliar environment without
pre-training, and then scientifically transform the keystroke
recognition problem with the unknown environment into
the keystroke recognition problem with the known environ-
ment. Then, a robust feature extraction method that reflects the
keystroke location is adopted to reduce the impact of individual
input habits since no matter what victim input habits are, the
same keystrokes have the same position information. Compared
with state-of-the-art keystroke snooping algorithms that need
to collect environmental information and to know victim input
habits, the proposed system KeystrokeSniffer is more practical
and highly efficient because it does not require collecting envi-
ronmental information and obtaining victim input habits.

Specifically, the proposed scheme employs dual microphones
equipped on a single commercial smartphone to collect sounds
caused by keystrokes. To deal with unknown input environments,
we present a novel scheme that extracts the timbre-related
characteristics and identifies large-size key data to estimate the
unknown input environment, including the keyboard type and
the relative position of microphones in the three-dimensional
space to the keyboard. After learning this originally unknown
information, the attacker can mimic the victim’s input environ-
ment and collect the training set in that environment, which
can significantly enhance the adaptability and robustness of the
keystroke eavesdropping algorithm to the unknown environment.
To ensure the proposed scheme’s robustness to unknown victims,
we extract robust features from the acoustic signal, including
Time Difference of Arrival (TDoA) and Power Spectral Density
(PSD) that fluctuate primarily with keystroke positions and are
less affected by the individual input habits of victims.

In brief, our contributions can be broadly summarized as
follows:

• To the best of our knowledge, this paper is the first
attempt to eavesdrop on the keystrokes from unfamiliar
environments without victims’ ground truth data.

• A novel unknown environment estimation algorithm is
proposed based on special timbre features of large-size
keys, which overcomes the problems posed by microphone
location changes and a lack of training data for keyboard
type.

• By considering the commonalities of different victim
keystroke habits, that the same keystrokes have the same

Pressed key 

Fig. 1 The attack scenario of the system.

position information, we propose a robust algorithm that
incorporates effective feature extraction and model training
to better reveal the keystroke positions to further realize the
identification of keystrokes from unknown victims.

• We implement the proposed approach on a single com-
modity smartphone (including different smartphone types).
Extensive experimental results demonstrate that the pro-
posed scheme outperforms state-of-the-art works in terms
of accuracy and robustness.

The rest of the paper is organized as follows. Sec. II discusses
numerous related studies. Then, we describe the KeystrokeSniffer
system design in Sec. III. Implementation, evaluation, and the
impacts of various factors on KeystrokeSniffer performance are
presented in Sec. IV. Finally, we conclude our work in Sec. V.

II. RELATED WORK

A. Keystroke Prediction Based on Sensors or Wireless Signal

Some of the earliest successes of side-channel attacks on
keystrokes were mostly accomplished via motion sensors [10],
[11]. These researchers obtained the keystroke motions by
collecting signals from the victim’s smartwatch during the in-
put. Thus, the victim’s keystrokes can be effectively assessed.
However, the efficacy of these methods can be undermined
by unpredictable human motions, which leads to challenges in
achieving precise correspondence between body movements and
keystrokes [12].

Meanwhile, the majority of these attacks required victims
to carry or wear specialized detection equipment, which can
make these attacks obtrusive. Several works exploited WiFi
or cellular network signals to conduct side-channel attacks on
keystrokes [13]–[15], which detected the victim’s input via
Channel State Information (CSI) [16]. However, they may be
applicable exclusively in scenarios involving wireless commu-
nications and transceivers [17]. Furthermore, different input en-
vironments may significantly change wireless signals caused by
the same keystrokes, which inevitably results in the performance
downgrade of these wireless-based methods [18]. Compared
with the prior methods, the proposed scheme does not require
complex or expensive equipment and is more adaptable to a
variety of input conditions, which makes the proposed scheme
more practical.
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B. Keystroke Prediction Based on Acoustic Signal

Several recent studies have employed acoustic signals to
carry out side-channel attacks on computer or mobile phone
keyboards [4], [6], [7], [19], [20]. In particular, the research
presented in [4] focused on calculating the TDoA of two
collected auditory channels to narrow down the possible label
range of each keystroke to 1-3 choices. The keystrokes were then
clustered based on their timbre using the K-means algorithm,
and the corresponding labels were assigned according to the
average TDoA within each category. Similarly, the use of TDoA
was also observed in [6] and [7], where mobile phone and
computer keyboards were attacked targets. Several other studies
have employed neural networks for keyboard eavesdropping.
For instance, researchers in [8] predicted keystrokes using
acoustic data collected from two to sixteen smartphone arrays.
By considering the temporal relationships between keystrokes,
they utilized Convolutional Neural Networks (CNN) to extract
features for keystroke recognition and Long Short-Term Memory
(LSTM) networks to enhance recognition accuracy. However, no
matter whether TDoA-based or neural network-based algorithms,
they collectively assumed that the victim’s input occurs in a
known environment. Unfortunately, unknown environments are
common in daily keystroke eavesdropping scenarios, and their
performance is significantly downgraded when facing unknown
environments.

Although the research in [9] explored keystroke eavesdrop-
ping on an unfamiliar keyboard, their approach was limited
to capturing keystrokes during phone calls and relied on the
assumption of a constant position of the recording device relative
to the keyboard. Thus, this system may lack robustness due to
its reliance on simplistic feature extraction. By using a single
smartphone placed within the range covered by a microphone
and speaker, UltraSnoop [21] proposed a placement-agnostic
scheme to infer the user’s input. Although it can infer the relative
position between the smartphone and the keyboard with satisfac-
tory recognition accuracy, it cannot distinguish between different
input keyboard types, which inevitably causes a performance
downgrade when the keyboard type changes.

On the other hand, existing state-of-the-art methods usually
ignored the differences in keystroke habits of different indi-
viduals, and they tried their best to ensure the high similarity
of keystroke postures in experiments. Once faced with indi-
viduals with different keystroke habits, their performance will
drop inevitably. For instance, the pioneer work in [7] extracted
frequency-domain features for better performance. However, the
composition of the frequency domain varied not only among
different keystrokes, but also in sound intensity and reflections
due to different input habits. Besides, the work in [22] pro-
duced ultrasonic waves and received corresponding reflection
signals to identify user keystrokes. As the victim’s finger moved,
the microphone captured the reflected signal, which formed
a distinctive waveform that portrayed the movement direction
attributable to the Doppler effect. Then, by comparing the energy
of the reflected signal to that of the transmitted signals, specific
keys could be discerned. However, the victim’s finger movement
was not always consistent, which potentially undermined the
accuracy of keystroke prediction in practical scenarios.

In contrast to prior studies, we first explore techniques to
accommodate variations in microphone positions and keyboard
types, which ensures the effectiveness of the proposed scheme

TABLE I Meaning of symbols in the keystroke eavesdrop
environment shown in Fig. 1.

Symbols Meanings

Mica,Micb Two microphones in the smartphone.

x(t) Raw signal from keystrokes in time domain.

X(ω) Raw signal from keystrokes in frequency domain.

d1, d2
Distances from the two microphones
to the sound source point, respectively.

Vs Velocity magnitude of sound in the air.

h
Height of the microphone’s plane
relative to the keyboard’s plane.

θ

The angle between the projection of the
line connecting Mica and Micb in the
xOy plane and the y-axis.

d Distance between two microphones.

(u, v, 0) Coordinate of the pressed key.

(u1, v1, h) Coordinate of Mica.

(u2, v2, h) Coordinate of Micb.

even in unfamiliar environments. Then, by leveraging the spatial
location features to distinct keystrokes, the system susceptibility
to alterations caused by victim users or keyboards is significantly
minimized. Furthermore, compared with neural network methods
that need a lot of data for training, the adaptability of proposed
algorithms and features enables this attack to be effectively
performed without extensive training on vast data volumes.

III. SYSTEM DESIGN

This section presents the proposed scheme design, which
utilizes the microphones of a single off-the-shelf smartphone
to perform side-channel attacks on keyboard input when both
keyboards and victims are unknown.

A. Attack Scenario

In order to restore the real scene attack, attackers conduct
a side-channel attack on keyboard input with unknown input
environments and unknown victims, which only utilizes two
microphones in the smartphone, denoted as Mica and Micb,
respectively. The unknown input environment implies that the
keyboard type is unidentified, and the microphones’ positions for
capturing acoustic signals may vary within the three-dimensional
space surrounding the keyboard. Additionally, unknown victims
mean that victims’ input habits are uncertain. Therefore, the
attack lacks labeled data from the input environments and the
corresponding victims for training purposes. Besides, throughout
the input process, the acoustic signal may be accompanied by
unpredictable ambient noise. To demonstrate the effectiveness
of KeystrokeSniffer for different type keyboards, the proposed
scheme is implemented and evaluated on three primary types
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Fig. 2 Illustration of the workflow to predict the unknown victim keystrokes with acoustic signals in unknown environments.

of keyboards, i.e., mechanical keyboards, membrane keyboards,
and laptop keyboards. For simplification of processing, we
assume that keyboard layouts of the same type are substantially
equivalent.

Fig. 1 presents an illustrative experimental scenario where the
Q key on the keyboard serves as the coordinate origin in this
paper. Tab. I shows the specific meanings of certain symbols
employed in this attack experimental scenario. The x, y, and z
axes of the coordinate system are defined to be perpendicular
to the row direction of the keys, parallel to the row direction
of the keys, and perpendicular to the plane of the keyboard,
respectively. In this attack experimental scenario, the smartphone
is placed in an upward position relative to the keyboard and in
a plane above the keyboard plane.

The objective of the proposed scheme is to eavesdrop on
the keystrokes of 32 keys on the keyboard, which comprise
26 alphabetic keys and 6 special keys, within the mentioned
conditions. These special keys, collectively referred to as large-
size keys, are larger in size compared to the alphabetic keys and
encompass the left Tab, CapsLock, left Shift, left Control, Space,
and Enter. It is worth noting that any attackers can effortlessly
apply the same principle to expand the attack to additional keys.

B. System Overview

The workflow of the proposed scheme is illustrated in Fig.
2. Specifically, KeystrokeSniffer mainly includes the following
five parts: data processing, environment estimation, training set
collection, feature extraction, and keystroke identification. The
innovative insight of KeystrokeSniffer is using several large-
size keys with obvious timbre distinctions to identify different
environment parameters in an unfamiliar environment without
pre-training and then scientifically transform the keystroke
recognition problem with an unknown environment into the
keystroke recognition problem with a known environment.
The data processing and environment estimation parts are em-
ployed to recognize the unknown environment, while the training
set collection, feature extraction, and keystroke identification
parts are used to identify keystrokes with different input habits
in the known environment. This section provides a detailed
description of these parts. The subsequent sections present a
specific implementation of side-channel attacks on keystrokes.

Data Pre-processing: Firstly, the acoustic signals of
keystrokes are captured by using two microphones embedded
in a single smartphone, and these microphones are positioned in
the 3D space surrounding the keyboard. The initial step for the
attackers involves detecting the keystrokes within the acquired
signal and subsequently segmenting the collected acoustic sig-
nals into individual segments to make sure each segment en-
compasses a single keystroke. Furthermore, an adaptive spectral
subtraction technique is employed to extract the acoustic signals
associated with the keystrokes from the original signal.

Environment Estimation and Training Set Collection:
Subsequently, two important pieces of information are extracted
by attackers from the unlabeled acoustic data. Firstly, since
keystrokes on different types of keyboards have significant
timbre differences, the type of input keyboards is determined by
extracting the Mel Frequency Cepstrum Coefficients (MFCC),
which can effectively represent the timbre characteristics of the
keystrokes. Secondly, by further utilizing collected unlabeled
samples, the 3D coordinates of the microphones are accurately
estimated by attackers.

Upon acquiring two important pieces of information, attackers
can mimic the real input environment by deploying the same type
of keyboard used by the victim and adjusting the microphone
locations to match the estimated relative positions. Consequently,
a targeted training set can be constructed for model training
within this specific scenario. By leveraging the environment
estimation algorithm and the offline data collection strategy, the
attacker can construct targeted training sets for the corresponding
environment and further enhance the system’s robustness to
unknown input environments.

Feature Extraction and Keystroke Prediction: Two robust
features from the acoustic signals are extracted to identify
keystrokes. Specifically, the principles of acoustic attenuation-
related feature PSD and the signal propagation path-related
feature TDoA are utilized to capture the location information
of keystrokes. Since Support Vector Machine (SVM) has strong
scene generalization and can still maintain good learning results
even with a relatively small number of samples, these acquired
features are then employed to train an SVM model for keystroke
prediction.

Totally we propose a novel offline technique for keystroke
prediction. However, given that the objective of the side-channel
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Fig. 3 The waveform of keystroke acoustic signals.
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Fig. 4 The relationship between the sound signal waveform
and Ek.

attack is to decode the victim’s input, there is no clear distinction
between online and offline tactics.

C. Data Pre-processing

This section focuses on the pre-processing of the acquired
acoustic signals. Specifically, KeystrokeSniffer conducts data pre-
processing on the collected two-channel signals through the
following three steps.

1) Keystroke Detection: A typical keystroke signal consists
of three distinct components: the contact peak, the hit peak,
and the release peak. Fig. 3 illustrates these three peaks in the
auditory wave of a single keystroke. To individually handle each
complete keystroke, we identify the occurrence of keystrokes
based on their spectral characteristics in order to separate them
from the entire raw signal. Specifically, since the energy of most
keystrokes is concentrated in the mid-to-high frequency region,
and low-frequency sounds often overlap with environmental
noises, e.g., background conversation and fan noise, we calculate
the spectral energy within the range of 2000-5000Hz, denoted
as Ek. Fig. 4 demonstrates the correspondence between the
keystroke signal waveform and Ek, and the calculated Ek
can effectively reflect the three peaks during keystrokes. Then,
we detect the presence of contact peaks by using empirical
thresholds to segment the signals. Particularly, when either of
the Ek values from the two channels exceeds these thresholds,
we consider that the keystroke signal has entered the contact
peak stage and utilize this time point as the start of a keystroke.
Subsequently, based on empirical knowledge, we commence at
the established starting point and divide the subsequent 180ms
signal into individual keystroke fragments.

2) Noise Elimination: Considering the environment of key-
board input, the acoustic signal of keystrokes is often overlapped
with ambient noise. These noises can impact the fine-grained

keystroke prediction task and undermine the scheme’s robust-
ness. Given the quasi-steady state of the acoustic signal, it can be
assumed that the ambient noise mixed in with keystrokes under-
goes little change over a short period. Additionally, considering
that keystroke recognition is a fine-grained task, our goal is to
mitigate the noise impact while preserving the original signal
feature. Therefore, we employ adaptive spectral subtraction
[23] to eliminate these additive noises while preserving the
keystroke responses. Specifically, we divide the entire signal
into a sequence of 20ms frames for processing and select the
5 frames preceding the keystroke as noise signal samples. To
avoid excessive fluctuations in the estimated noise of one frame,
we average the spectra of the selected 5 frames preceding the
keystroke to obtain the noise spectrum N(ω), which can be
denoted as:

N(ω) =
1

5

5∑
i=1

Xi(ω), (1)

where N(ω) denotes the obtained noise spectrum, and Xi(ω)
represents the frequency domain representation of the i-th frame
preceding the keystroke. By incorporating the obtained noise
spectrum [24], we further use Eq. (2) to determine the keystroke
signal.

K(ω) =

{
X(ω)− αN(ω), if X(ω)− αN(ω) > βN(ω)
βN(ω), otherwise,

(2)
where K(ω) represents obtained keystroke signals after noise
elimination. α and β are different parameters, i.e., weight
parameter and threshold parameter, used for signal smoothing,
respectively. In particular, the size of the weight parameter α
determines the sensitivity of the filter to noise, and if α is smaller,
the filter is more sensitive to the noise impact and will retain
more of the original signal information but may retain some
noise. On the other hand, the threshold parameter β determines
the filter’s tolerance for noise. If β is small, the filter has a
low tolerance for noise, and even if the noise slightly exceeds
αN(ω), it will be filtered out. The value of α can be calculated
by the following equation [24]:

α =


4− 3

20
SNR,−5 ≤ SNR ≤ 20,

5,SNR < −5,

1,SNR > 20,

(3)

where SNR represents the Signal-to-Noise Ratio. Besides, taking
into account the fluctuation characteristics of the sound signal
and the tolerance to noise, based on empirical knowledge, the
threshold parameter β is set to 0.02. Additionally, the proposed
scheme updates the noise spectrum dynamically by calculating
the corresponding signal SNR. If the obtained SNR falls below
a certain threshold, the noise spectrum Nnew(ω) is updated
according to Eq. (4), which ensures the effectiveness of the noise
elimination algorithm.

Nnew(ω) = g ×N(ω) + (1− g)×X(ω), (4)

where g is a weighting factor between 0 and 1, when g is
close to 0, the adjusted noise spectrum is closer to the original
signal spectrum, which means that the noise is preserved more.
Otherwise, when g is close to 1, the adjusted noise spectrum
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Fig. 5 Illustration of the noise elimination algorithm’s perfor-
mance.

is closer to the original noise spectrum, which means that the
noise is removed more. Similarly, to control the noise adjustment
scope and adjustment speed, based on empirical knowledge,
we set g to 0.9. Following these steps, we normalize the
values of the collected signals to the range of [−1, 1]. Fig. 5
illustrates an example of the noise elimination algorithm’s effect
in the attack scenario depicted in Fig. 1. In particular, the input
environment contains various noises in this daily office scenario,
e.g., human conversations, machine operations, and white noise.
Nevertheless, it is evident that the proposed scheme effectively
extracts the keystroke signals while preserving their original
characteristics.

3) Windowing and Framing: Subsequently, we apply the
framing and windowing procedures to the obtained segments
after keystroke detection and noise elimination. Due to the
time-varying nature of the acoustic signal and the correspond-
ing fundamental parameters, it exhibits non-stationary behavior.
However, within short time intervals, its characteristics remain
relatively constant, which indicates a quasi-steady-state process
[25]. Hence, we partition the signal into frames to capture the
fine-grained features that can more precisely represent the time-
domain characteristics. Specifically, we divide the signal into a
series of 10ms Hanning windows, with a shift of 2.5ms per step.
Sec. IV-G-3 demonstrates the specific reasons for choosing this
sliding window size and shift step. This framing and windowing
process enables us to extract frame-based features that more
accurately reflect the signal’s time-domain characteristics.

D. Environment Estimation

Although state-of-the-art methods effectively improve
keystroke prediction accuracy, they frequently neglect the
impact of relative location and input environment on keystroke
prediction. To address these challenges, we propose an
environment estimation algorithm in this section. This
algorithm aims to transform an unknown input environment
into a known one in the absence of ground truth training data.

1) Keyboard Type Recognition: As keyboards of the same
type share similarities in mechanical structure, key positions, and
keystroke timbre while exhibiting significant diversity across dif-
ferent categories, keyboard type uncertainty can pose challenges
in keystroke prediction. This diversity affects the frequency
domain composition of the keystroke signal and can potentially
increase the intra-class distance among samples. Since MFCC
can effectively denote the timbre characteristics of keystrokes,
to capture the variations in keystroke timbre, we employ MFCC
for keyboard categorization. MFCC analyzes the acoustic signal
by utilizing the amplitude of the Fourier transform of the time-
domain acoustic frame. In particular, we extract 16 MFCC from
the framed and windowed data. Subsequently, considering that
SVM has strong scene generalization and can still maintain good
learning results even with a relatively small number of samples,
we employ SVM as the classification algorithm to determine the
keyboard type based on the extracted MFCC.

2) Large-size Key Recognition: Due to the unavailability of
labeled ground truth samples and limited conditions, extracting
real environmental information becomes challenging for attack-
ers. To overcome this limitation, we leverage unlabeled keystroke
signals from the victim to identify labels for a subset of special
keystrokes (large-size keys). This is because the timbre of large-
size keys, such as Space and Enter, inherently differs from that
of other keystrokes on the keyboard. Specifically, by utilizing
MFCC features, we can successfully distinguish these larger-
size keys. In preparation for each type of keyboard, we gather
acoustic signals of frequently used large-size keys in advance
without requiring any input information from the victim. These
collected signals are then used to train the SVM classifier to
detect the large-size keys from unlabeled acoustic data.

3) Microphone Coordinates Estimation: The smartphone
used for capturing keystroke sounds can be positioned in any
pose within a 3-dimensional space surrounding the keyboard. As
the microphone placement affects the signal path, we then design
an algorithm to estimate the 3D coordinates of two microphones
(denoted as (u1, v1, h) and (u2, v2, h)). By considering the
distance between the two microphones (denoted as d) and the
tilt angle (denoted as θ), the coordinates of the microphones can
be determined as (u1, v1, h) and (u1 + d cos θ, v1 + d sin θ, h),
respectively.

Based on these considerations, we sequentially estimate the
four unknown parameters in the microphone coordinates to
obtain their 3D coordinates. Firstly, we estimate the parameter
h by leveraging the recognized large-size keys. Since obtaining
the exact value of the microphone height is a challenging fine-
grained task, we transform the height parameter estimation
problem into a classification problem based on different height
planes. Each height plane corresponds to a specific distance
from the keyboard plane. Considering that the vertical distance
of most keystrokes is less than 3cm [26] and the effective
pickup height of commodity microphones on mobile phones
used for keystroke recognition is about 15cm [27], we establish
six height planes at intervals of 3cm within the [0, 15cm] range
surrounding the keyboard plane. During the estimation process,
we extract various location-related features, e.g., energy ratio
and TDoA, from the identified large-size keys to classify h into
the appropriate height plane (h ∈ 0, 3, 6, 9, 12, 15).

Specifically, the relationship between the energy of the
keystroke signal and the distance traveled by the acoustic signal
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can be expressed as:
E1d

2
1 = E2d

2
2 + η, (5)

d1 =

√
(u1 − u)

2
+ (v1 − v)

2
+ h2, (6)

d2 =

√
(u1 + d cos θ − u)

2
+ (v1 + d sin θ − v)

2
+ h2, (7)

where the distances between the pressed key and the two
microphones are represented as d1 and d2, respectively. E1

and E2 denote the energy of the two channel signals, while η
represents the noise variance [28]. Due to the effective denoising
process, the remaining noise component in the keystroke signal
can be ignored.

TDoA represents the time delay between the arrival of the
acoustic signal from a keystroke at the two microphones. It is
solely influenced by the propagation path of the two-channel
acoustic signals. The theoretical TDoA ∆tthe between the two-
channel signals can be represented as:

∆tthe =
| d1 − d2 |

Vs
. (8)

where Vs is the velocity magnitude of sound in the air.
Then, we combine Eq.(8) and Eq.(5) to obtain:

d1 =
Vs∆tthe

| 1−
√

E1

E2
|
, (9)

d2 =
Vs∆tthe

|
√

E2

E1
− 1 |

. (10)

Considering the calculation of d1 and d2, Eq.(9) and Eq.(10)
can be interpreted as two spherical equations in the coordinate
system. Thus, the intersection of these equations determines
the potential positions of the keystroke. Since several keys at
different positions can determine a plane, we can obtain the
keyboard plane by multiple identified large-size keys’ positions,
which are determined by the value of h (calculated by the
energy ratio and TDoA of large-size keys). Building upon the
aforementioned analysis, we proceed to extract location-related
features, e.g., short-term energy, Cross-power Spectral Density
(CSD), and TDoA from the recognized large-size keys for height
plane classification. The short-term energy measures the energy
of the acoustic signal within each frame. Specifically, the short-
term energy of the i-th frame signal can be computed as:

E(i) =

l∑
k=1

x2
i (k), (11)

where l represents the length of each frame. Besides, TDoA can
be calculated based on cross-correlation, which can be expressed
as:

Rxa,xb
[m] =

l−1−m∑
k=0

xa[k]xb[m+ k], (12)

where Rxa,xb
[m] is cross-correlation of xa and xb. xa and xb

represent the signals received by two microphones, respectively.
m is the delay number of the sampling points. By calculating the
cross-correlations of these two signals and finding the position
corresponding to the maximum value, this position mRmax is
the estimated value of the delay sampling points.
mRmax can be used to calculate the corresponding time
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Fig. 6 Illustration of the difference between measured TDoAs
and theoretical TDoAs for 26 letters.

delay between the keystroke to different microphones (TDoA).
Specifically, the measured TDoA ∆tmea can be expressed as:

∆tmea = mRmax ·
1

f
, (13)

where f denotes the sampling rate. Besides, CSD can be
obtained by the frequency representations of cross-correlations
[29]. Utilizing these features as input, an SVM model is trained
for height plane classification, and the corresponding classifica-
tion result is regarded as the height of the microphone’s plane
relative to the keyboard’s plane h.

Once h is obtained, we can utilize a TDoA-based optimization
algorithm to estimate the remaining parameters u1 and v1
when θ is known. For each identified large-size key with a
coordinate (u, v, 0), its TDoA can be calculated in two ways:
the theoretical values ∆tthe computed from the coordinates, and
the measured values ∆tmea obtained from acoustic signals using
cross-correlation. The calculation of ∆tthe is based on Eq. (8),
while ∆tmea is estimated using Eq. (12). Different microphone
placements can make distinct value differences. Fig. 6 illustrates
an example of the difference between ∆tmea and ∆tthe for
26 letters when the microphone is positioned on top of the
keyboard, which demonstrates that the measured TDoA values
∆tmea are similar with the theoretical TDoA values ∆tthe, and
the placements of the microphones are appropriate. Moreover,
from the perspective of an attacker, microphones are best placed
where the measured values ∆tmea are the same as the theoretical
values ∆tthe.

The Covariance-Matrix Adaptation Evolution Strategy (CMA-
ES) algorithm utilizes the evolutionary history to determine the
direction of evolution, which effectively addresses the issue of
local optima [30]. Microphone position estimation problems in
real-world scenarios may contain multiple local optimal solu-
tions due to multiple reflections or absorption of sound signals.
Nevertheless, CMA-ES can still handle such complex problems
since it can expand the search range and explore different
solution regions, which significantly improve the probability
of finding the global optimal solution. Therefore, to find the
best microphone placement and perform the optimization, we
leverage CMA-ES to optimize the associated ∆tthe values to
approximate ∆tmea. Additionally, we incorporate the distance
between the smartphone’s two microphones as a constraint
during the optimization process. Upon completion of the op-
timization, the parameters of ∆tmea can represent the potential
placements of the microphones.

To minimize estimation errors, we run CMA-ES multiple
times on each identified large-size key, yielding a curve that
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represents probable microphone coordinate results. In an ideal
scenario, the intersection of these curves derived from the
recognized large-size keys would pinpoint the specific location
of the microphone. However, due to the presence of calculation
errors, we typically obtain an intersection set denoted as U ,
where the centroid of this set serves as the final estimate for the
microphone’s position. To mitigate the influence of outliers, we
discard intersection points whose abscissa or ordinate deviates
significantly from the mean value.

Since the value of θ is unknown, we partition its value range
into 36 equally spaced intervals (θ ∈ 0◦, 10◦, 20◦, ..., 350◦)
and traverse through them. Similarly, for each θ value, we
employ CMA-ES to estimate the corresponding u1 and v1, which
generates the position set U(θ). When the true value of θ is
reached, the curves obtained from different keys tend to intersect
more precisely at a single point, thereby minimizing the variance
of U(θ). Thus, we select the θ value associated with the smallest
variance of U(θ) as the final estimation. Mathematically, this can
be expressed as follows:

θ = arg min{V ar(U(θ))} (14)

Subsequently, we consider the microphone coordinates corre-
sponding to the estimated θ value as the outcome of the position
estimation. Fig. 7 presents an example of the estimation results
for u1 and v1 when a mechanical keyboard is employed and the
microphone is positioned on top of the keyboard (as depicted in
Fig. 1).

E. Feature Extraction & Model Training

Once the keyboard type and microphone coordinates have
been obtained, the attacker can place the smartphone at the
corresponding coordinates relative to the same type of keyboard.
This allows for the collection of a training set within the given
input environment. The combination of environmental estima-
tion and offline training set collection empowers the proposed
scheme to be self-adaptive and independent of prior knowledge
in unfamiliar environments. With the aid of this training set,
attackers can extract valid features for keystroke prediction.

While the proposed scheme effectively addresses the challenge
of an unknown environment, the varying input habits of different
victims can still result in changes in some characteristics of the
keystroke acoustic signal, e.g., sound intensity and frequency. To
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(a) The acoustic waveform of key ’Q’.
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(b) The acoustic waveform of key ’P’.

Fig. 8 Acoustic waveforms for different keystrokes.

tackle this, attackers need to identify robust features within the
audio segment of the keystrokes. The guiding principle in feature
selection is to minimize the impact of keystroke sound-related
factors, e.g., keystroke sound intensity and timbre. Accordingly,
since no matter what victim input habits are, as long as the
keystrokes are the same, the corresponding position information
must be the same, we aim to disregard keystroke sound-related
elements and instead concentrate on uncovering the keystroke
positions. One of the chosen features for keystroke identification
is TDoA, which was previously discussed for its robustness to
variations and being solely influenced by the sound propagation
path.

We proceed to extract additional robust features from acoustic
signals to enhance fine-grained keystroke identification. Acoustic
signals experience attenuation as they propagate, with their en-
ergy being dispersed in the air and absorbed by the surrounding
medium. The extent of acoustic signal attenuation primarily
depends on the propagation distance and its frequency. Given
that the initial energy and propagation medium of the two
collected signals are identical, the energy differences between
them reflect the variation in distance. To quantify the disparity
in sound attenuation between the two channels, we utilize PSD
as one of the features, as it can capture the signal power
changes with frequency. The PSD calculation is performed in the
frequency band of 2000-5000Hz, where most keystroke signals
are predominantly distributed. By using the Wiener–Khinchin
theorem (Eq. (15)) [31], the PSD PX(w) can be mathematically
represented as:

PX(w) =

∫ ∞
−∞

Rx(τ)e−jwτdτ, (15)
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where Rx(τ) represents for the auto-correlation of signal x(t).
e is the base of natural logarithms and j denotes the imaginary
unit.

TDoA and PSD are chosen as features due to their robustness
to changes in victims and keyboards. To effectively capture
the distinctive attributes of the keystroke signal, we extract
features from different segments of the signal. Specifically, since
the first component of the keystroke signal follows a direct
path from the sound source to the microphone, minimizing the
impact of multipath reflections and noise, the TDoA calculation
is performed on the initial 20ms segment. Subsequently, we
compute the PSD for each frame within the 3 peaks of the
keystroke signal.

Fig. 8 depicts an example of the first 5ms waveforms of
the acoustic signals produced by the ’Q’ and ’P’ keys, which
are obtained from the mechanical keyboard with microphones
positioned on top of it. As shown in Fig. 8(a), Channel 1
exhibits a phase delay relative to Channel 2, accompanied by a
reduction in signal amplitude. Conversely, Fig. 8(b) demonstrates
the opposite scenario. This observation highlights the accurate
reflection of keystroke positions by TDoA and PSD. Notably,
the similarity between the signal waveforms of the two acoustic
channels enables the determination of TDoA through cross-
correlation.

The combination of our effective environment estimation
algorithm and robust feature extraction enables us to achieve
accurate keystroke prediction with a small training set, where
the ratio of training data to test data is set at 5 : 1. For
keystroke classification, we employ SVM due to its ability to
yield satisfactory results even with limited training data and
various sample noises. This choice aligns with the realistic
scenario of the sample scarcity in side-channel attacks.

F. Word-Level Precision

When anticipating meaningful content, the keystroke clas-
sification performance can be enhanced by considering the
alphabetical order of words, and the related word prediction can
be provided by the KeystrokeSniffer system simultaneously. In
English input, the presence of the Space and Enter keys signifies
the separation between words. We identify these keys in signals
and consider the segment between them as the signal correspond-
ing to a word, which can obtain the keystroke sequence for each
word.

For each keystroke predicted by the system, we can obtain a
pair of parameters that represent the expected results and their
corresponding confidence level. By processing all the keystrokes
within a word, we can obtain a sequence of such parameter pairs.
To enhance accuracy and fault tolerance, we utilize the Top-5
outcomes of each keystroke prediction as input for word-level
prediction, which are sorted by confidence level.

For word-level predictions, we construct a dictionary com-
prising the 1500 most frequently used words. After identifying
the keystrokes within a word and obtaining a series of results,
KeystrokeSniffer first searches the dictionary for words of the
same length. Then, the confidence of each word is calculated
as the average of the confidence associated with its constituent
letters. This approach provides us with confidence levels for all
words.

IV. EXPERIMENTAL EVALUATION

A. Implementation & Methodology

This section provides a detailed evaluation of the
KeystrokeSniffer performance. The evaluations in this part
are performed on the HUAWEI Mate20 Pro smartphone, whose
two microphones are positioned at the bottom of the device. For
the purpose of carrying out the side-channel attack, an Android
application is developed using Java programming language,
which can help collect acoustic signals. During the attack, the
phone initiates the collection of acoustic signals at a sampling
rate of 48kHz.

To ensure the system robustness, we conduct the imple-
mentation using different keyboards with diverse timbres and
sound intensities. The evaluation encompasses five mechanical
keyboards, two membrane keyboards, and two laptop keyboards
from Lenovo and Alienware laptops. Specifically, mechanical
keyboards exhibit higher sound intensities, while the weakest
keystroke sounds are observed on laptops. Furthermore, due to
the variations in design and dimensions across different keyboard
types, it is necessary to identify them prior to the evaluation.

As discussed in the previous section, our evaluation and data
collection focus on 32 keys on the keyboard. We recruit 12 vol-
unteers to participate as victims, which consists of three female
volunteers and nine male volunteers. In order to comprehensively
assess the system’s performance, we conduct data collection in
diverse test scenarios. Each experimental scenario is defined
by two variables: the relative position of the microphone and
the type of keyboard. To cover a wide range of possibilities,
we establish 48 experimental scenarios, encompassing all types
of keyboards, victims, and 24 microphone placements. The
microphone positions include the top, bottom, left, and right on
each of the six different planes, which are located at distances of
0cm, 3cm, 6cm, 9cm, 12cm, and 15cm from the plane where
the keyboard is positioned.

B. Metrics

In this paper, we leverage the following metrics to evaluate
the performance of the proposed attack system:

1) Recall. Given a series of keystrokes, the recall can be
defined as:

Recall =
TP

TP + FN
, (16)

where TP , FN represent True Positive and False Negative,
respectively.

2) Precision. Given a series of keystrokes, the precision can
be expressed as:

Precision =
TP

TP + FP
, (17)

where FP represents the False Positive.
3) F1-score. The F1-score can be represented as:

F1-score =
2× Precision×Recall
Precision+Recall

. (18)

4) Top-k Accuracy. The Top-k Accuracy measures the proba-
bility of the correct result being among the top k sequences
ranked by confidence.

In particular, to demonstrate the expression rigor, referring
to the definition of authoritative survey papers [32]–[34] on
keystroke recognition, we define ”accuracy” as the recognition
precision of a single character or word above 80%, ”practicality”
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Fig. 9 Performance of the CMA-ES-based microphone position estimation algorithm.

TABLE II Performance of the keyboard type recognition
algorithm.

Precision Recall F1-score

Mechanical 96.55% 100.00% 98.25%

Membrane 100.00% 96.97% 98.46%

Laptop 99.35% 99.33% 99.34%

as the recognition precision of a single character or word above
70% when the input environment is different, and ”satisfactory”
as the recognition precision of a single character or word above
85%.

C. Evaluation of Microphones’ Position Estimation
The evaluations in this part primarily assess the perfor-

mance of the environmental estimation algorithm, which contain
keyboard type recognition, large-size key identification, and
microphone position estimation. As attackers, we can perform
environment estimation using a pre-collected training set. Since
the accuracy of environment estimation predominantly depends
on large-size keys, we collect 20 keystrokes from each of
the 6 large-size keys across the 24 experimental scenarios for
evaluation. To ensure the full representation of experimental

effects in unfamiliar environments, the data from the keyboards
and volunteers used for each testing session are not included in
the training set.

To assess the usability of the environmental estimation algo-
rithm, we first evaluate the keyboard type recognition method.
For each evaluation, we use the data from a single keyboard
as the testing set, while the corresponding training set consists
of data from other keyboards of the same type. The average
results of keyboard type recognition are reported in Tab. II.
The experimental findings demonstrate that the proposed scheme
effectively recognizes three commonly used keyboard types.

The subsequent part of the evaluation focuses on identifying
the large-size keys contained in the sampled data. Alongside the
existing dataset, we collect additional data on alphabetic keys
for each experimental scenario to evaluate this aspect. We utilize
data from one experimental scenario at a time as the testing set,
while the remaining data serves as the training set. The average
results of detecting six commonly used large-size keys during
typing are depicted in Fig. 9(a). The average precision is 86.5%,
and the average recall is 86.2%. The experiments confirm the
system’s capability to accurately identify large-size keys from
a series of acoustic inputs. The recognition of the Space and
Enter keys exhibits slightly higher accuracy compared to other
keys, attributed to their distinctive timbre. Although occasional
identification errors may occur, these samples can be easily
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Fig. 10 Performance on predicting keystrokes from unknown
environments.

deleted due to their significant offset in location estimation.
Next, we assess the performance of the microphone position

estimation algorithm, which encompasses the classification of
height planes and the offset of the final estimated coordinates.
Height plane classification is conducted for each experimental
scenario, and the mean values of the classification results for
each plane are calculated. Fig. 9(b) shows the confusion matrix
of the height plane classification results. The average recall
achieves 76.9%. Experimental findings clearly demonstrate the
effectiveness of the proposed algorithm within the range of
[0, 15cm], which satisfies most cases in daily typing situations.

By obtaining the value of h, attackers can proceed with the
final estimation of the microphone coordinates. For each exper-
imental scenario, we use different large-size keys to conduct
three different estimations. The average results of coordinate
estimation on each plane are presented in Fig. 9(c). Experimental
results consistently demonstrate that the coordinate estimation
deviation remains within 3cm. These results illustrate that it is
possible to estimate the relative position by only using a single
smartphone and the recognized large-size keys without the need
for prior knowledge of the keystroke labels.

Since estimation errors are still present in the microphone co-
ordinate results, we conduct tests to assess the impact of the po-
sition estimation offset on the system performance. Specifically,
we select five microphone placement points at distances of 0cm,
3cm, 5cm, 8cm, and 10cm from the original position where
the training set is collected. These evaluations are performed
with the microphone placed at the top, bottom, left, and right
of the keyboard, respectively. Then, we evaluate the prediction
performance of unknown keystrokes collected from the chosen
positions. The overall average performance is illustrated in Fig.
9(d). In particular, when the offset is 3cm, the F1-score loss
is below 8%. This finding suggests that an estimation error of
approximately 3cm is acceptable for both microphone position
estimation and keystroke prediction.

D. Evaluation in Unknown Environment

One of our work’s primary contributions is the proposed
system’s adaptability to different contexts and its ability to pre-
dict collected keystrokes without prior knowledge. In practical
scenarios, attackers typically lack information about keyboards
or victims prior to the attack. Thus, our objective is to develop
a system that can accurately predict keystrokes from unknown
keyboards and victims.
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Fig. 11 Performance comparison with existing works.

In our data collection evaluation, we utilize various avail-
able keyboards and volunteers. These available keyboards and
volunteers are divided into two groups: the attacker group and
the victim group. The victim group includes 4 keyboards and 4
volunteers, while the remaining participants formed the attacker
group. The victims perform keystrokes in various experimental
scenarios, and the attackers attempt to eavesdrop on these
keystroke samples in the absence of the victim’s data.

Specifically, we first collect keystroke data of victims in 24
experimental scenarios across 6 planes, which serves as the
testing set. Subsequently, the attackers utilize the victims’ data to
estimate the environmental information and create corresponding
estimated scenarios. By employing training sets gathered from
24 simulated experimental scenarios, the attackers can capture
the keystrokes from the victims’ actual experimental scenarios.
The size ratio of the training set to the testing set is set to 5 : 1.

The system performance of predicting keystrokes from various
unfamiliar keyboards is illustrated in Fig. 10. We can observe
that the average accuracy for Top-1, Top-3, and Top-5 predictions
is 34.75%, 56.75%, and 79.50%, respectively. The experimental
results clearly demonstrate KeystrokeSniffer ability to accurately
predict keystrokes across different keyboard types, even in
unfamiliar environments.

E. Comparison with Previous Works

In this section, we compare our system with two state-of-
the-art studies, i.e., one deep learning-based method [8] and
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TABLE III Prediction of words. Position in results means which position in the prediction results is the real word.

Words degree university children what book promotion campaign honey quiet

Length 6 10 8 4 4 9 8 5 5

Position in results (User1) 1 1 1 1 1 1 1 1 2

Position in results (User2) 1 1 1 1 3 1 1 1 2

Position in results (User3) 1 1 1 2 1 1 2 1 1

Average position 1.00 1.00 1.00 1.33 1.67 1.00 1.33 1.00 1.67

Words bring misfortune friend country nothing proceed could just zoom

Length 5 10 6 7 7 7 5 4 4

Position in results (User1) 1 1 1 1 1 2 5 1 3

Position in results (User2) 1 1 3 4 1 1 1 1 2

Position in results (User3) 1 1 1 5 1 1 1 1 1

Average position 1.00 1.00 1.67 3.33 1.00 1.33 2.33 1.00 2.00

one signal analysis-based method [9]. The work in [8] utilized
CNN for keystroke recognition, which employed multiple mobile
phones as recording devices. The second work, conducted by [9],
focused on classifying keystrokes by extracting the MFCC of
acoustic waves. Through experiments conducted in two different
scenarios, we evaluate the KeystrokeSniffer performance for
keystroke recognition and compare it with the performance of
these two baseline strategies.

We first test the keystroke recognition performance when
the keyboard type and microphone placement are known. We
conduct experiments using all acquired datasets from each
experimental scenario and present the results of a 10-fold
cross-validation. Fig. 11(a) illustrates the overall performance
of the proposed system and two baseline systems, which rep-
resents the average results for recognizing keystrokes across
9 keyboards and 12 volunteers. The experiments demonstrate
that KeystrokeSniffer achieves higher average precision, recall,
and F1-score, reaching 94.4%, 85.0%, and 89.5%, respectively,
which significantly surpasses the recognition results obtained in
[8] and [9]. This clearly highlights the superior performance
of the proposed system in keystroke prediction, which can be
attributed to the adoption of a robust feature extraction algorithm
that is related to the keystroke location.

Furthermore, we compare the performance of keystroke pre-
diction in unfamiliar environments. These experimental scenar-
ios correspond to the ones described in Sec. IV-D. As depicted
in Fig. 11(b), the proposed system exhibits a significant per-
formance advantage over the two baseline schemes, which is at-
tributed to its efficient environment estimation scheme and robust
feature selection. Although the Top-1 Accuracy decreases when
confronted with unknown victims and keyboards, a favorable
Top-5 Accuracy can still be achieved, which proves valuable
in identifying the typing words in unfamiliar settings. This
illustrates that it is feasible for KeystrokeSniffer to accurately
identify keystrokes from unknown environments through the
novel environment estimation scheme and the robust feature
extraction algorithm.

F. Performance of Word Prediction

To demonstrate the accuracy of word prediction, we select
120 words of varying lengths and letter compositions from
the dictionary and predict them. The experimental settings are
identical to those outlined in Sec. IV-D, where victims input
5 different words in each experimental scenario. The selected
words are chosen randomly from the dictionary, which ensures
they exhibit the following characteristics: 1) frequent usage, 2)
diverse letter compositions, and 3) inclusion of words with both
the same and different lengths. The average Top-k accuracy
ratios for the words contained in the testing set are 66.7%,
81.7%, and 96.6% for k=1, 3, and 5, respectively. We further
select frequently used words from the test results and present
them in Tab. III. The position value represents the confidence
ranking of the true result within the sequence of predicted results.

The evaluation demonstrates KeystrokeSniffer ability to accu-
rately distinguish words with similar structures and to effectively
handle a wide range of words, which highlights its strong gener-
alization capabilities for word-level prediction. KeystrokeSniffer
successfully restores the victim’s input, which validates the im-
proved practical performance due to considering the alphabetical
order of meaning words. Consequently, these side-channel at-
tacks pose more significant risks to user privacy than previously
anticipated, particularly in light of the widespread use of smart
devices today.

G. Deep Dive into KeystrokeSniffer

The main purpose of this section is to demonstrate the impacts
of various factors, e.g., environmental factors, equipment factors,
processing factors, and human factors, on the KeystrokeSniffer
system. In order to understand the impact of a single factor
on the experimental results and effectively control variables, the
experiments in this section are conducted with keyboard type and
microphone placement location known. In order to minimize the
influence of extraneous factors, we maintain a fixed microphone
placement throughout the experiments.

1) Impact of Noises: To evaluate the system’s robustness
against noises, we perform experiments in three different scenar-
ios with varying noise levels. The scenarios and corresponding
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TABLE IV Types of noises.

Scene of occurrence Type of noises

Apartment White noise (31dB)

Conference room White noise (30dB), Conversation (61dB), Music (42dB)

Laboratory White noise (25dB), Keystrokes (45dB), Machine (43dB)
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Fig. 12 Performance in noisy environments.

noise types are detailed in Tab. IV. Specifically, noise types
include white noise, conversation noise, music noise, irrelevant
keystroke noise, and machine operating noise, and their noise
intensity ranges from 25dB to 61dB.

As illustrated in Fig. 12, KeystrokeSniffer exhibits stability
and accuracy in common typing scenarios with various types
of noises. By employing 10-fold cross-validation, the F1-scores
for keystroke prediction in three different scenarios are found
to be 90.43%, 85.22%, and 83.0%, respectively. Although a
slight negative impact on keystroke prediction may arise as
the environmental noise component gradually increases, the
accuracy and robustness of KeystrokeSniffer are still maintained.
This robustness is attributed to the noise elimination algorithm
and the robust feature selection, which affirm the superiority of
the proposed system in common noise scenarios.

2) Impact of Different Mobile Phones: To demonstrate the
impact of microphone variations across different mobile phones
on recognition performance and assess KeystrokeSniffer robust-
ness to diverse sound collection equipment, we include five
additional mobile phones, namely, HUAWEI Mate40 Pro+, Vivo
X60, Samsung Galaxy Z Fold2, Xiaomi 13, and OnePlus 6. We
then calculate the corresponding keystroke recognition precision,
recall, and F1-score. Each mobile phone imitates the way that the
HUAWEI Mate20 Pro smartphone collects signals and performs
the same experiments as introduced in Sec. IV-E.

Fig. 13 shows the various recognition performance metrics,
i.e., Precision, Recall, and F1-score, of the KeystrokeSniffer
system influenced by different sound collection equipment from
different phone models. From Fig. 13, we can observe that
KeystrokeSniffer achieves satisfactory and similar recognition
performance across different sound collection equipment. Fur-
thermore, even if a OnePlus 6 released six years ago (2018.5.17)
is used for sound signal collection, the KeystrokeSniffer system
can still achieve an F1 score of 87.7%. These results clearly
demonstrate the strong robustness of the KeystrokeSniffer system
to different sound collection equipment from various smart-
phones, which is conducive to deploying the KeystrokeSniffer

Mate40 Pro+ Vivo X60 Flod 2 Xiaomi 13 OnePlus 6

Different phone models
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Fig. 13 The performance influenced by various sound collec-
tion equipment from different phone models.

TABLE V Impact of different window sizes and shift steps on
the system F1-score.

Window size/
Shift step 2ms 5ms 10ms 20ms 50ms

0.1× 54.6% 70.6% 78.4% 74.2% 81.5%

0.25× 60.4% 72.4% 89.5% 86.5% 79.4%

0.5× 65.7% 74.8% 87.7% 81.9% 77.8%

1× 66.1% 73.5% 74.6% 69.7% 67.3%

system in different devices to achieve effective identification of
keystroke content.

3) Impact of Window Size and Shift Step: The segmentation
window size and the shift step inevitably affect the accuracy of
keystroke recognition. A window size that is too large can easily
increase the computational complexity of keystroke detection.
On the contrary, a window that is too small cannot maintain
enough information, which results in a decrease in keystroke
recognition accuracy [35]. Furthermore, the shift step affects
the smoothness of the processed signals. To find the appropriate
segmentation window size and the shift step, the impact of the
window size W and the shift step S on the system performance
is presented. Specifically, we set the window size W to one
of the 2ms, 5ms, 10ms, 20ms, and 50ms and chose the shift
step S as 0.1×, 0.25×, 0.5×, and 1× times the corresponding
window size.

Tab. V shows the F1-scores of the proposed system under the
impact of different window sizes and shift steps. We observe that
the recognition performance (F1-score) basically increases with
a larger window size when W is less than 10ms and has a slight
drop when W is larger than 10ms. This is because the 10ms
sliding window contains enough keystroke information, and
the shorter sliding window contains less keystroke information.
However, a sliding window that is too long cannot guarantee
the smoothness of the sound signals, and the saliency of the
keystroke features can also be affected. Besides, shift steps also
affect keystroke recognition performance. This is because the
shift step size affects the difference and stability of continuous
sampling. When the window size W is 10ms with a shift step
size S of 0.25 times, it can help the system to better capture
the keystroke characteristics and achieve the best recognition
performance.

4) Impact of Hand Length and Palm Size: Apparently, hand
length and palm size significantly affect how keystrokes are
performed. Fig. 14 depicts keystroke postures performed by
subjects with different hand lengths. Specifically, the hand length
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Fig. 14 Keystroke postures for different finger lengths.
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Fig. 15 The performance influenced by different human hand
lengths.

is defined as the distance from the tip of the middle finger to
the bottom of the palm when the subject is in a relaxed state.
We observe that the keystrokes of subjects with long fingers
are more inclined, and the relative keystroke angle is smaller.
These differences in keystroke angles and postures may affect
the recognition results.

To demonstrate the robustness of KeystrokeSniffer to different
hand lengths, we divide the length of human hands into five
intervals (0, 15cm), [15, 17cm), [17, 19cm), [19, 21cm), and
(21cm,∞) [36], and hire three different volunteers to perform
keystrokes in each interval. We train and test the collected sound
data in each hand length interval separately and present the
results of a 10-fold cross-validation.

Fig. 15 depicts the recognition performance of the
KeystrokeSniffer system to the keystrokes performed by differ-
ent hand-length persons. As the length of the subject’s hand
increases, the system’s recognition performance first rises sig-
nificantly and then remains stable. This is because the longer
the hand, the greater the muscle changes caused by keystrokes,
which finally results in the more obvious signal fluctuations. Ac-
cordingly, it is easier to analyze the movement changes from the
obvious fluctuation signals. Nevertheless, we can observe that the
system achieves satisfactory keystroke recognition accuracy for
all kinds of hand lengths. Even for the keystrokes conducted by
subjects with hand lengths not exceeding 15cm, KeystrokeSniffer
can still achieve a comparable recognition accuracy of more than
85.7%. This clearly demonstrates the strong robustness of the
KeystrokeSniffer system for various subjects with different hand
lengths since timbre-independent and position-related keystroke
features are effectively extracted.

V. CONCLUSION

This paper presents a practical side-channel attack
(KeystrokeSniffer) on keyboard input using acoustic signals
captured by an off-to-shelf smartphone. To address unfamiliar
environments, we propose an efficient approach for estimating
keyboard types and microphone positions. Additionally,
by further disregarding keystroke sound-related elements
and concentrating on uncovering the keystroke positions,
KeystrokeSniffer extract two timbre-independent and position-
related keystroke robust features to mitigate the impact of
environmental variations while ensuring precise keystroke
classification and effectively tackles the problem caused by the
varying input habits of different victims. Extensive experimental
results demonstrate that compared with state-of-the-art methods,
the proposed system achieves enhanced robustness and accuracy
in keystroke prediction. Even with limited training data,
this side-channel attack strategy poses a significant threat to
the victim input, which makes it practical to perform and
challenging to mitigate. By setting different parameter values of
various experiment impact factors, we further verify the strong
robustness of KeystrokeSniffer to different factors, e.g., noises,
mobile phone models, processing window size, and human hand
length, which proves that KeystrokeSniffer can create privacy
threats in real situations.
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