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Abstract—Because of the ambiguous and subjective property of the facial expression, the label noise is widely existing in the FER
dataset. For this problem, in the training phase, current methods often directly predict whether the label is noised or not, aiming to
reduce the contribution of the noised data. However, we argue that this kind of method suffers from the low reliability of such noise data
decision operation. It makes that some mistakenly abounded clean data are not utilized sufficiently and some mistakenly kept noised
data disturbing the model learning. In this paper, we propose a more reliable noise-label suppression method called ReSup. First,
instead of directly predicting noised or not, ReSup makes the noise data decision by modeling the distribution of noise and clean labels
simultaneously according to the disagreement between the prediction and the target. Specifically, to achieve optimal distribution
modeling, ReSup models the similarity distribution of all samples. To further enhance the reliability of our noise decision results, ReSup
uses two networks to jointly achieve noise suppression. Specifically, ReSup utilize the property that two networks are less likely to
make the same mistakes, making two networks swap decisions and tending to trust decisions with high agreement. Extensive
experiments on popular datasets shows the effectiveness of ReSup.

Index Terms—Facial Expression, Label Noise, Affective Computing, Label Noise Modeling, Label Noise Suppression.
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1 INTRODUCTION

Facial expression recognition (FER) has become a crucial
service in various real-world applications, such as health-
care [1], [2], surveillance [3], [4], and virtual reality [5]. It
aims to recognize specific human emotions from the given
facial images. However, obtaining high-quality annotations
for large-scale FER datasets collected from the Internet poses
challenges due to the subjectivity of annotators and the
ambiguity of facial expressions. Consequently, these low-
quality annotations introduce label noises. Therefore, how
to suppress label noises in FER tasks has become a research
hotspot and attracted more and more attention [6]–[11].

To address this challenge, existing FER methods com-
monly integrate an importance learning branch to estimate
the importance weight of each image, determining whether
the label of the input image is noisy or not [6], [7], [9].
However, we argue that these methods suffer from the low
reliability of such noise decision operation. Such operation
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Fig. 1. Comparison of label noise suppression process of different noisy
label FER methods. The top is the current schemes and the bottom
is ReSuP. ReSuP generates more reliable weights by noise modeling
and suppresses unreliable weights by unreliability suppression design
in addition to suppressing noisy labels. Triangles represent unreliable
weights.

usually generates unreliable weights and makes that some
mistakenly abounded clean data are not utilized sufficiently
and some mistakenly kept noised data disturbing the model
learning process. These unreliable weights originate from
two perspectives: the noise decision process and the FER
model itself. The former unreliable weights are due to over-
fitting of the importance learning branch as a result of the
strong learning ability of deep neural networks (DNNs) [9].
Furthermore, such noise decision process only considers in-
formation from a single sample [6] or a batch [7], neglecting
global information [9] and resulting in unreliable decision-
making. In addition to the unreliable weights caused by



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

the noise decision process, the FER model itself inevitably
produces some unreliable outputs (the inputs of the im-
portance learning branch), resulting in further unreliable
weights. These unreliable weights accumulate during the
entire learning process and affect current and future learn-
ing stages. Unfortunately, existing methods do not address
how to mitigate the effects of these unreliable weights.
Novel methods are required to address these limitations and
improve the reliability and accuracy of noisy label FER.

In this paper, we present a novel approach called ReSup.
The main objective of ReSup is to suppress noisy labels and
unreliable weights, as illustrated in Figure 1. Specifically,
instead of directly predicting noised or not, ReSup makes
the noise decision by modeling the joint distribution of noise
and clean labels. This is motivated by the memorization
effect of deep neural networks (DNNs), where the model
tends to memorize correctly labeled samples first [12]–[14],
leading to noisy samples having higher loss during early
epochs of training [15], [16]. In order to achieve optimal dis-
tribution modeling, ReSup propose to model the similarity
(cosine similarity of predictions and targets) distribution of
all samples rather than the loss, which reduces the confusion
between noisy and clean distributions. The fitted noise
model is then used to provide importance weights for each
sample based on its similarity, without using neural network
branches to avoid overfitting. In addition, the proposed
scheme can take into account the global distribution of all
samples. Furthermore, ReSup mitigate the effect of the un-
reliable weights by leveraging the agreement maximization
principles [17], [18], which suggest that two different net-
works would agree on most samples except for noisy sam-
ples [19] and thus can filter different types of errors. Inspired
by the agreement maximization principles, ReSup employs
two different networks to provide importance weights to
each other, to prevent the accumulation of errors caused
by unreliable weights. We also introduce a consistency loss
that assigns large losses to samples with small agreement
to prevent the model from fitting samples with unreliable
weights, since the samples with small agreements usually
are noisy samples. In summary, our contributions include:

• To avoid extra unreliable weights caused by the
DNN-based importance learning branch, a novel
label noise modeling method based on similarity
distribution statistics is proposed to estimate the
importance weights.

• We propose ReSup to suppress label noise in FER.
ReSup satisfactorily mitigates the effect of the un-
reliable weights by leveraging a weight exchange
strategy and a consistency loss.

• Extensive experiment results demonstrate that the
proposed ReSup significantly outperforms state-of-
the-art noisy label FER solutions on multiple FER
benchmarks with different levels of label noise.

2 RELATED WORK

2.1 Facial Expression Recognition

The categorization of FER methods can be broadly divided
into two groups based on the features used: handcraft-based
and learning-based approaches. Earlier research mainly

relied on handcrafted features [20], [21], which capture
the folds and geometry changes caused by facial expres-
sions [22], [23]. Nevertheless, researchers have gradually un-
covered the limitations of handcraft-based methods, partic-
ularly in-the-wild scenarios. Fortunately, with the advance-
ment in computational ability and the rapid development
of large-scale datasets, e.g., AffectNet [24], RAF-DB [25],
and EmotioNet [26], recent studies mainly focus on deep
learning [27], [28] as a better alternative. Ruan [29], [30]
proposed the feature decomposition method and the re-
construction learning algorithm for effective FER. RAN [31]
proposed a region attention network to overcome the pose
and occlusion challenges in FER. Transformers [32] have
also been introduced into the FER due to its powerful global
information awareness. However, the presence of label noise
in large-scale datasets remains a significant challenge for
FER in in-the-wild scenarios.

In recent years, several algorithms are proposed to
address the label noise challenge in FER. Among these,
SCN [6], RUL [9], and DMUE [7] use neural network
branches to estimate importance weight for each sample,
determining whether the label of the input image is noisy
or not. However, the strong learning capability of DNNs can
lead to overfitting of the importance learning branch and the
fact that these approaches do not exploit global information,
both leading to unreliable weights beyond the FER model
itself. To address this issue, PT [8] selects samples with
small losses as clean samples for training, without relying
on a neural network branch to learn importance weights.
However, PT requires setting a threshold based on the exact
noise level and dataset used, which is impractical in real-
world scenarios. In contrast, our proposed scheme uses
unsupervised noise modeling to mitigate these issues with-
out requiring prior knowledge, and suppresses unreliable
weights by unreliability suppression design in addition to
suppressing noisy labels.

2.2 Noisy Label Learning

Learning with noisy labels has been extensively studied in
the computer vision community, and current approaches
can be broadly categorized into four following groups [33]:
robust architecture, robust regularization, robust loss func-
tion, and robust data.

Robust architecture-based methods usually added a
noise adaptation layer [34] at the top of the network [35]
to learn label transition proces or designed a noise-tolerant
architecture [36] to reliably support more diverse types of
label noise. Robust regularization-based methods aimed to
explicitly [37] or implicitly [38] induce DNNs to be less
likely to overfit the noisy labels. By avoid overfitting in
training, the robustness to label noise improves with reg-
ularization techniques such as data-augmentation [39] and
weight decay [40].

Robust loss function-based methods seeked to design
a loss function that is robust to noisy labels, to prevent
DNNs from fitting to the noisy samples [41], [42]. Robust
data-based methods aim to select clean samples from noisy
data based on thresholds [14] or weights [15]. Threshold-
based algorithms, which require an artificial threshold to
select clean samples and discard noisy samples, have been
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Fig. 2. The ReSup framework. During the training process, input images are simultaneously passed through two networks, fθ1(x) and fθ2(x). The
outputs of the final layer of these networks are then used as inputs to the label noise modeling module for modeling label noise. Both networks
simultaneously model the label noise, and the fitted noise model is used to generate importance weights for the corresponding inputs and to weight
the loss of the other network. The weighted loss is then summarized and used in the backpropagation process to guide network learning.

explored in classical robust data-based methods [14], [43],
[44]. Discarding noisy samples, however, potentially mistak-
enly discard clean samples and removes useful information
about the data distribution [15], [45]. To avoid this problem,
recent approaches propose the use of two-component beta
mixture models (BMM) [15] or Gaussian mixture models
(GMM) [46] that rely on losses to model the label noise
and assign weights to the samples based on the fitted noise
model to suppress the noisy labels. Based on the memory
effect mentioned in section 1, these schemes believe that
the loss distributions of clean and noisy samples are sig-
nificantly different. However, these state-of-the-art schemes
rely on loss distribution for noise modeling, which may not
be effective in noisy label FER due to the inter-class similar-
ity of facial expressions. We propose to model label noise by
relying on the similarity (Section 3.2) and demonstrate its
effectiveness in section 4.5.

3 METHOD

3.1 Overview of ReSup

Current approaches in FER that rely on DNNs [47] to learn
how to identify label noise in facial expression datasets often
result in the generation of unreliable weights. To mitigate
this issue, we employ a statistical modeling approach to
differentiate between noisy and clean labels. However, com-
pared to related research in other domains, facial expres-
sions pose unique challenges due to their inherent ambi-
guity. The ambiguity of facial expressions refers to the lack
of clear distinction between different classes of expressions,
leading to confusion and potential overlap. This can cause
severe distributional confusion in the later stages of training
in previous statistical modeling-based approaches, render-
ing the model unable to identify label noise effectively. The
proposed solution addresses this challenge by employing
similarity instead of loss for the statistical modeling of label
noise, thus effectively resolving it. Furthermore, a weight
exchange strategy and consistency loss are designed to
further mitigate the impact of unreliable weights.

FER can be formulated as the problem of learning a
model fθ(x) from a set of facial images T = {(xi,yi)}

N
i=1

with yi ∈ {0, 1}C is the one-hot ground-truth label corre-
sponding to xi.

In our case, fθ is a CNN and θ is the model parameters.
Besides, the label yi could differ from the true label (noisy
label). During the learning, the parameters of the model are
fitted by optimizing the cross-entropy (CE) loss:

Lce =
N∑
i=1

Li = −
N∑
i=1

yT
i log(fθ(xi)) (1)

where fθ(xi) and Li represent the softmax output and the
loss produced by the model, respectively. For simplicity, we
use f i to represent fθ(xi) in the remainder of the paper.
The goal of FER model is to minimize the CE loss to obtain
the optimal model parameters θ. However, noisy labels can
negatively impact the training process and lead to poor
performance. Therefore, our goal is to mitigate the impact
of label noise during the training process.

The framework of ReSup is depicted in Figure 2. The
proposed method comprises two components, namely label
noise modeling and noise-robust learning. Label noise mod-
eling aims to model the distribution of the label noise. The
fitted noise model can provide importance weights for each
sample according to its similarity. These assigned weights
are then used by noise-robust learning to effectively learn
informative representations in the presence of label noise. To
better achieve this goal, noise-robust learning uses a weight
exchange strategy and a consistency loss to mitigate the
effect of unreliable weights.

3.2 Label Noise Modeling
To enable a noise-robust [48] learning approach (section 3.3),
it is necessary to identify noisy samples in the training set T
first. Given that deep neural networks (DNNs) often tend
to memorize correctly labeled samples initially and then
gradually fit to noisy labels [12]–[14], leading to larger losses
for noisy samples during the early epochs of training, the
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(a) The loss distribution of samples in the dis-
gust class after the 1st epoch of training.

(b) The loss distribution of all samples after the
1st epoch of training.

(c) The similarity distribution of all samples
after the 1st epoch of training.

(d) The loss distribution of samples in the
surprise class after the 1st epoch of training.

(e) The loss distribution of all samples after the
7th epoch of training.

(f) The similarity distribution of all samples
after the 7th epoch of training.

Fig. 3. Loss and similarity distributions of training samples in the RAF-DB under 30% noise.

memorization effect is thus observed. Recently, inspired by
the memorization effect, some state-of-the-art label noise
modeling methods [15], [46] are proposed to unsupervised
fit the loss distribution of all samples by a two-component
mixture model. By relying on the clear distinction between
the loss distributions of clean and noisy samples, this mix-
ture model can effectively predict the importance weights.

Fig. 4. Comparison of using loss and similarity to model label noise. The
figures in the upper and lower left corners show the change in loss and
similarity with respect to the prediction probability p, respectively. The
figures in the upper and lower right corners show the corresponding
loss and similarity distributions of samples, respectively.

Regrettably, since the loss distributions of clean and
noisy samples are significantly confused, the performance of
label noise modeling algorithms, such as [15], [46], may be
inadequate in the context of noisy label FER tasks. This con-
fusion arises from the ambiguity of facial expressions, which
is exacerbated by the cross-entropy (CE) loss function. In
particular, certain expressions, such as fear and surprise,
are more ambiguous than others and result in larger losses
for clean samples and smaller losses for noisy samples in
these classes relative to others [29] (Because FER model has
higher probability of incorrect predictions for these classes.),
as shown in Figures 3(a) and 3(d). The prediction probability
pi for a sample xi is defined as:

pi =
c∑

k=1

yik · fik (2)

where c is the number of classes. yik and fik denote the
one-hot label and the softmax output corresponding to xi

in class k. Hence, the CE loss can be represented as:

Lcei = −log(pi) (3)

where Lcei is the CE loss corresponding to xi.
As depicted in Figure 4, the CE loss, which has been

widely used in previous studies, exhibits high sensitivity
to small prediction probabilities. As a result, even a slight
change in the prediction probability can lead to a significant
variation in the resulting loss. This sensitivity amplifies the
difference in the loss distribution of noisy samples from
different classes, resulting in an approximately uniform
distribution of all noisy sample losses (Figure 3(e)). This
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phenomenon ultimately leads to confusion between the
distributions of noise and clean samples and hinders the
ability to model them using unsupervised mixture models.
Moreover, the CE loss only takes into account the prediction
probability, which can be the same for both noisy and clean
samples, thus further exacerbating the confusion between
the two types of samples. To address this limitation, a new
function should be employed the following requirements:

• Whether the model is learning well enough can be
measured by the chosen function (similar to loss);

• The chosen function should exhibits low sensitivity
to prediction probability change;

• The chosen function should be able to differentiate
between clean and noisy samples even when their
prediction probabilities are the same.

In order to model label noise, directly using prediction
probability has the advantages of meeting the first and
second requirements. However, it falls short in meeting the
third requirement. To overcome this limitation, we propose
using the cosine similarity (S) of the prediction to the given
label as a suitable function for the task. This choice allows us
to better distinguish between clean and noisy samples, even
in cases where the prediction probabilities for these samples
may be the same. The formula for calculating the similarity
is as follows:

Si =
pi√∑c

k=1(fik)
2
= cos(f i,yi) (4)

where c is the number of classes
As illustrated in Figure 4, compared to the CE loss,

the similarity-based approach is less sensitive to variations
in the prediction probability. This implies that the same
difference in probability yield a smaller difference in the
cosine similarity distance compared to CE loss, leading to
a more focused distribution of noise samples. In contrast
to methods that solely rely on the prediction probability,
the similarity-based approach considers the entire output
of the network, providing more information to effectively
discriminate between the distributions of clean and noisy
samples. Specifically, for a given xi and pi, if ∃fij =
1−pi, j ∈ [1..c] & yij ̸= 1, then Si get the minimum. Besides,
if ∀fij = (1− pi)/(c− 1), j = 1..c & yij ̸= 1, then Si obtain
the maximum. Apparently, according to the memorization
effect, yi is more likely to be a noisy label when Si obtains
the minimum. Intuitively, the memorization effect suggests
that noisy labels are not the first to be memorized, implying
a mismatch between the network’s prediction and the label.
And if Si obtains the minimum, there is a greater probability
that fij > 1− pi exists.

Following previous studies [15], [46], we first model the
similarity distribution using a mixture model, and then use
the generated noise model to provide a probability for each
sample that it belongs to clean samples. The probability
density function (pdf) of a mixture model of K components
on the similarity S can be defined as:

p(S) =
K∑

m=1

δmp(S|m) (5)

where δm are the mixing coefficients of each pdf p(S|m).
In our case, we fit a two-components (i.e. K = 2) mixture
model to model the distribution of clean and noisy samples.

We choose the more flexible BMM to model the similarity
distribution. The pdf of the beta distribution is:

p(S|αm, βm) =
Γ(αm + βm)

Γ(αm)Γ(βm)
Sαm−1(1− S)βm−1 (6)

where Γ(·) is the Gamma function, S is the similarity,
αm, βm > 0, and the mixture pdf is given by substituting
the above into equation 5.

We use an Expectation Maximization (EM) procedure to
fit the BMM to the similarity of all samples in this study.
After the noise model is fitted, we can obtain the probability
of a sample belongs to clean samples (importance weights)
through the posterior probability:

wn = p(m|S) = p(m)p(S|m)

p(S)
(7)

where m = 1(0) denotes clean (noisy) classes. p(S|m) is
defined to be the posterior probability of the similarity S
having been generated by component m.

3.3 Noise-Robust Learning
Label noise modeling generates a noise model to assign
importance weights to each training sample in T , and
noise-robust learning aims to suppress the label noise in
T and extract meaningful knowledge by leveraging these
importance weights. To better achieve this goal, we propose
a weight exchange strategy along with a consistency loss
to eliminate the effect caused by unreliable weights. The
proposed method consists of two DNNs denoted by fθ1(x)
and fθ2(x).

Network. For ReSup, both fθ1(x) and fθ2(x) can be used
to predict facial expression alone, but during the training
stage, the parameters of the two networks are updated
simultaneously by a joint loss. Specifically, the joint loss
function Ljo is constructed as follows:

Ljo = Lwc + λLco (8)

In the joint loss function, the first part Lwc is the
weighted CE loss of the two networks, which reliably uses
the importance weights by relying on the weight exchange
strategy to suppress label noise and learn useful knowledge.
The second part Lco is the consistency loss, which is used
to further attenuate the effect of unreliable weights. λ is the
hyperparameter to control the influence of Lco.

Weight Exchange Strategy Based Weighted CE Loss.
The importance weights are utilized to weigh the CE loss
for suppress label noise. To avoid errors caused by unreli-
able weights being accumulated, the weights of fθ1(x) and
fθ2(x) are exchanged. Intuitively, due to the presence of
memorization effects, DNNs tend to prioritize learning from
clean samples, allowing us to select clean samples based
on DNN predictions. However, neural networks inevitably
produce unreliable predictions, such as misclassifying noise
samples as clean ones. If this error flow is directly fed back
into the network during the learning process, the error will
gradually accumulate. This is because the errors generated
during subsequent learning stages are likely to be of the
same type, causing the DNN to treat this type of error
as correct knowledge. However, different networks have
varying learning capabilities and can therefore identify and
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filter out different types of errors [14], [44]. Consequently, in
the weight exchange procedure, error flows can be mitigated
by peer networks mutually. When errors from noisy data
flow into the peer network, they are attenuated due to its
robustness. The weighted CE loss is formulated as:

Lwc = wn2 · Lce1 + wn1 · Lce2 (9)

where Lce1 and Lce2 represents the CE loss of fθ1(x) and
fθ2(x), respectively. wn1 and wn2 denotes the importance
weight from fθ1(x) and fθ2(x), respectively.

Consistency Loss. From the perspective of agreement
maximization principles [17], [18], different networks are
unlikely to agree on noisy labels, meaning that the prob-
ability of two networks simultaneously making the same
unreliable decisions for the same noisy samples is small.
Thus, we utilize a consistency loss to evaluate the agreement
between the two networks. The consistency loss imposes
high loss values on samples with low agreement to further
discourage the model from fitting samples with unreliable
weights. When there is a small agreement, the probability
that the sample belongs to noise is high. A high consistency
loss makes the model more likely to fit the prediction of
another network instead of the intended target. The consis-
tency loss is as follows:

Lco =
1

c

N∑
i=1

c∑
k=1

(f ik1 − f ik2)
2 (10)

f ik1 and f ik2 denotes the outputs of the “softmax” layer in
fθ1(x) and fθ2(x) for sample xi on class k, respectively.

The closest approach to our model is JoCoR [19], which
also employs two networks and a contrastive loss. However,
JoCoR uses the average loss of the two networks to select
clean samples based on a threshold. In contrast to JoCoR,
ReSup utilizes two networks to provide importance weights
to each other and employs a consistency loss to mitigate the
impact of unreliable weights. To evaluate ReSup’s effective-
ness, we have also implemented a JoCoR-based scheme in
our experiments. (Section 4.5).

4 EXPERIMENTS

In this section, we evaluate the effectiveness of ReSup on
synthetic label noise datasets and in-the-wild benchmarks.

4.1 Datasets
RAF-DB [25] is the first in-the-wild dataset containing ba-
sic or compound expressions, including nearly 30k facial
images annotated with basic or compound expressions by
40 trained human annotators. In our experiments, we use
only images of six basic expressions (happy, surprise, sad,
anger, disgust, fear) as well as neutral, which leads to 12,271
images for training and 3,068 images for testing.

FERPlus [34] is an extension of FER2013, which is used
in the ICML 2013 Challenge. It is a large-scale dataset
collected through the Google search engine. It contains
28,709 training images, 3,589 validation images, and 3,589
test images, which are resized to 48×48 pixels. FERPlus
includes eight emotional states (six basic emotions, neutral
and contempt), and each image is labeled by ten human
annotators.

TABLE 1
Comparison with other state-of-the-art noisy label FER schemes.

Results are computed as the mean of the last 5 epochs.

Method Noise RAF-DB FERPlus AffectNet

SCN [6] 10% 84.97% 85.08% 61.71%
DMUE [7] 10% 83.19% - -
RUL [9] 10% 86.05% 86.32% 62.80%
PT [8] 10% 87.28% 85.04% -
EAC [49] 10% 88.10% 86.87% 63.37%
La-net [50] 10% 88.75% 88.02% 62.05%
DR-FER [51] 10% 88.92% 87.58% 63.12%
DivFER [52] 10% 88.17% 87.75% -
Ours 10% 88.43% 87.82% 64.29%

SCN [6] 20% 83.67% 84.87% 60.80%
DMUE [7] 20% 81.02% - -
RUL [9] 20% 84.83% 84.65% 61.69%
PT [8] 20% 86.25% 84.27% -
EAC [49] 20% 86.76% 85.98% 62.74%
La-net [50] 20% 87.12% 86.85% 61.72%
DR-FER [51] 20% 86.82% 87.07% 61.33%
DivFER [52] 20% 87.05% 86.97% -
Ours 20% 87.29% 87.08% 63.97%

SCN [6] 30% 80.61% 83.32% 59.00%
DMUE [7] 30% 79.41% - -
RUL [9] 30% 81.16% 83.73% 60.71%
PT [8] 30% 84.32% 83.73% -
EAC [49] 30% 85.07% 85.36% 62.60%
La-net [50] 30% 85.33% 86.01% 60.82%
DR-FER [51] 30% 84.31% 84.88% 59.40%
DivFER [52] 20% 85.63% 83.65% -
Ours 30% 86.86% 86.74% 62.89%

AffectNet [24] is the largest in-the-wild facial expression
dataset by far. It contains nearly 450K manually annotated
facial images collected from the Internet by three major
search engines with emotion-related keywords. This dataset
has an imbalanced training set and a balanced validation
set. Following previous work [10], [53], [54], we selected
approximately 280,000 and 3,500 images for training and
testing, and the classes are the same as RAF-DB.

4.2 Implementation Details
In our experiments, we adopt ResNet-18 [55] pretrained
on the MS-Celeb-1M [56] as fθ1(x) and ResNet-18 pre-
trained on the ImageNet [57] as fθ2(x) for fair comparisons
with previous works [6], [8], [9]. The images we used are
aligned and cropped with three landmarks, then resized
to 224 × 224 pixels, and augmented by random horizon-
tal flipping, random erasing, and random cropping.During
training, we use a batch size of 96 and employ Adam
as the optimizer with an initial learning rate of 0.0002.
We divide the learning rate by 10 at epoch 10 and 20
for RAF-DB and FERPlus, and at epoch 5 and 10 for Af-
fectNet. Training concludes at epoch 30 for RAF-DB and
FERPlus, and at epoch 20 for AffectNet. We set the hyper-
parameter λ to 5 by default based on our ablation studies.
Our implementation is based on the Pytorch toolbox, and
all experiments are conducted on a single NVIDIA RTX
3090. Upon completion of model training and during infer-
ence, we can discard fθ2(x) and the label noise modeling
component, retaining only fθ1(x) and the final softmax
layer to obtain the final results, significantly reducing the
computational and storage requirements during inference.
Code:https://github.com/purpleleaves007/FERDenoise.
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Fig. 5. Visualization of the confidence score of SCN, RUL, and ReSup. All models are trained on RAF-DB with 30% noise. The importance
weights/uncertainty values are marked at the top. The true labels and the labels for training are marked in the lower right and left corners,
respectively. For noisy samples, the uncertainty values should be large but the importance weights should be small.

Fig. 6. Some examples of RAF-DB (w/o synthetic noisy labels) with low importance weights. The importance weights are marked at the top, and
the true labels are marked at the bottom.

4.3 Evaluation on Noisy FER Datasets
In this section, we present a quantitative evaluation of
the proposed ReSup method compared to other state-of-
the-art approaches for addressing noisy labels in FER on
RAF-DB, FERPlus, and Affectnet datasets. Following prior
studies [6]–[9], we randomly select a portion (10%, 20%,
and 30%) of the training data and corrupt their labels by
assigning them to other random facial expression categories
to generate noisy labels.

The experimental results in Table 1 demonstrate that
the proposed ReSup method achieves superior performance
compared to other methods. For instance, under the noise
rate of 30%, ReSup outperforms SCN by 6.25%, 3.42%, and
3.89% on RAF-DB, FERPlus, and AffectNet, respectively.
Moreover, the performance degradation of ReSup is only
1.57% and 1.08% when adding 30% noise to 10% RAF-DB
and FERPlus datasets, while SCN degrades by 4.36% and

1.76%, and PT drops by 2.96% and 1.31%.

It is noteworthy that ReSup uses a modeling-based ap-
proach for importance weight estimation, unlike SCN [6],
DMUE [7], and RUL [9] that rely on a network branch for
this task. As such, ReSup does not face the concern that the
powerful learning ability of deep neural networks (DNNs)
may degrade the importance weight decision process. In
comparison to PT [8], ReSup does not require knowledge
of the exact noise level to set a threshold for selecting clean
samples. Moreover, PT [8] introduces a considerable amount
of additional data (280, 000 extra samples) for achieving bet-
ter results through semi-supervised learning. The purpose
of FENN [11], [58] is to suppress heteroscedastic uncertainty
caused by label noise between classes, but its suppression
method is also implemented through DNN, leading to
its limited reliability and performance. Furthermore, SCN,
RUL, and DMUE rely on a label correction module to im-
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(a) Ablation studies on RAF-DB.
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(b) Ablation studies on FERPlus.

Fig. 7. The test accuracy vs. epochs on RAF-DB and FERPlus with 30%
noise level. Loss and Sim represent using a single network to model and
suppress label noise by relying on the loss and the similarity distribution,
respectively. ReSup is the proposed Cross-Denoising, while Crosswe is
ReSup w/o the consistency loss. ReSupL and CrossWeL are similar to
ReSup and CrossWe but use the loss to model noise. JoCoWe is the
JoCoR-based method.

prove performance, whereas ReSup outperforms them with
only a more reliable utilization of the importance weights.
Compared to EAC, our approach exhibits superior gener-
alization capability (Section4.12). Compared to La-net [50],
DR-FER [51], and DivFER [52], ReSuP achieves superior
noisy FER performance without relying on landmarks or
additional representations, leveraging only the information
disparity during the network learning process.

4.4 Visualization Analysis
In this section, we present a comparative analysis of the
proposed ReSup method with other state-of-the-art FER
schemes for noisy label data, namely RUL and SCN. We
assess the effectiveness of these methods on the RAF-DB
dataset with a 30% noise level by visualizing and comparing
the estimated importance scores. The results are showcased
in Figure 5, where the first three columns depict clearly
mislabeled images, and the last two column features clean
images. We observe that both the proposed ReSup method
and RUL accurately distinguish between clean and noisy
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Fig. 8. The accuracy of CrossDe and JoCoWe with different λ on
RAF-DB with 30% noise. (For JoCoWe, the hyperparameter for the
contrastive loss is 0.1 ∗ λ)

samples. In contrast, SCN may confuse clean and noisy
samples. However, we note that RUL does not provide sig-
nificant differences in uncertainty values for clean and noisy
samples. Additionally, the images in the fourth and fifth
column is ambiguous, and the proposed method assigns an
importance weight close to 0.5. However, SCN and RUL
classify this image either as clean or noisy. Furthermore, the
sixth column displays a meaningless image, and both RUL
and ReSup assign small importance to it, while SCN does
not.

Furthermore, we evaluated our ReSup on original FER
datasets, which inevitably suffer from label noise, and the
results are presented in section 4.6. We illustrated some
samples with low importance weights from the original
RAF-DB in Figure 6. We found that ReSup is more likely to
assign low-importance weights to ambiguous, low-quality,
and occluded images.

TABLE 2
Ablation studies on RAF-DB and FERPlus with 30% noise. Loss and

Sim represents cross-entropy loss and similarity-based noise modeling,
respectively. WeEx and Col represents weight exchange and

consistency loss, respectively.

Loss Sim WeEx CoL RAF-DB FERPlus

71.43% 72.14%
✓ 72.67% 78.23%

✓ 83.05% 84.79%
✓ ✓ 74.14% 80.83%

✓ ✓ 85.26% 85.74%
✓ ✓ ✓ 77.91% 82.22%

✓ ✓ ✓ 86.86% 86.74%

4.5 Ablation Studies

To analyze the roles of different components in ReSup, we
conduct ablation studies on RAF-DB and FERPlus datasets
with a 30% noise level. The experimental results are de-
picted in Figure 7(a), 7(b), and Table 2, respectively. It is
noteworthy that, to further illustrate the effectiveness of
the weight exchange strategy, we also compare ReSup with
JoCoR [19], which selects examples based on the average
loss of two networks. The first row of Table 2 serves as a
baseline without noise suppression measures.

The observations are as follows: (1) The use of the loss
for label noise modeling is found to be less effective as the
training progresses, while the proposed similarity-based ap-
proach is seen to remain effective. (2) The weight exchange
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TABLE 3
Comparison with other state-of-the-art FER schemes.

Method Publication RAF-DB FERPlus AffectNet

LDL-ALSG [54] CVPR 2020 85.53% - 59.35%
EfficientFace [53] AAAI 2021 88.36% - 63.70%
SCN [6] CVPR 2020 87.03% 88.01% -
DMUE [7] CVPR 2021 88.76% 88.64% -
RUL [9] NIPS 2021 88.98% 88.75% -
PT [8] TAFFC 2021 88.69% 86.60% 58.54%
EAC [49] ECCV 2022 89.99% 89.64% 65.32%
POSTER [59] ICCV 2023 92.05% 91.62% 67.31%
CA-FER [60] TAFFC 2023 90.06% - 64.31%
POSTER++ [61] PR 2024 92.21% - 67.49%
DR-FER [51] TMM 2024 91.61% 91.91% 67.54%
Ours 89.70% 88.85% 65.46%

strategy is observed to improve performance by eliminating
accumulated errors caused by unreliable weights. (3) The
application of the consistency loss further enhances perfor-
mance by preventing the networks from fitting unreliable
weights when two networks’ predictions significantly differ.
(4) The proposed ReSup approach outperforms the JoCoR-
based method due to the latter’s clean sample selection
method weak in eliminating accumulated errors.

We also evaluate the effect of the hyperparameter λ for
both ReSup and JoCoR-based method as shown in Figure 8.
ReSup achieved the best performance at λ = 5 and JoCoR-
based method achieved the best performance at λ = 0.6,
while ReSup performs better than JoCoR-based method
with different λ. In additional analysis, we computed the
cosine similarity between the predictions of fθ1(x) and
fθ2(x) on RAF-DB. The results show that with consistency
loss, the average similarity on the test set increased from
0.83 to 0.91, indicating that consistency loss enhances the
alignment between the two networks’ predictions, thereby
improving overall performance.

4.6 Comparision with State-of-the-art Methods

We compare ReSup with several state-of-the-art FER meth-
ods on original RAF-DB, FERPlus, and AffectNet in Table 3.
Besides the noisy label FER studies mentioned in previous
sections, EfficientFace [53] incorporates local and global
features to learn a FER model. gACNN [62] leverage atten-
tion mechanism to conduct an occlusion-aware FER model.
POSTER [59] concentrates on inter-class similarity, intra-
class discrepancy, and scale sensitivity issues in FER and
proposes a two-stream Pyramid Cross-fusion Transformer
network to tackle these challenges. DR-FER [63] designs
a ResNet-50-based network to extract discriminative and
robust representations from facial expressions. Additionally,
CA-FER [60] devises an IR-50-based network that uses
causal reasoning to simultaneously optimize feature dis-
crimination and diversity to mitigate spurious correlations
in expression datasets.

Although our performance on the original dataset
doesn’t match that of the SOTA approaches, our work
demonstrates the effectiveness of the proposed solution in
addressing the issue of noisy labels in facial expressions.
For facial expressions, the problem of ambiguous labels
is widespread due to the ambiguity and combinability
between expressions, as well as the cost considerations

in annotating large-scale datasets. Therefore, besides fo-
cusing on learning better facial expression features like
SOTA approaches, it’s crucial to avoid learning erroneous
knowledge introduced by noisy labels during model train-
ing. This becomes particularly important in the context of
semi-supervised learning-based FER models, which involve
generating large-scale pseudo-labels to leverage abundant
unlabeled facial expression data, and it is a potential next
research direction for us. Moreover, the proposed similarity
modeling approach is well-suited for facial expressions, as
it can address the traditional modeling breakdown caused
by the ambiguity of facial expressions.

We also implement two plain methods using thresh-
old from Co-teaching [14] and PT [8] with performance
of (86.53%,83.21%,82.37%) and (84.91%,77.93%,72.46%) on
the RAF-DB (noise 10%-30%), respectively. We also metic-
ulously tune the threshold-based method from [8], [14] on
our scheme, with the best performance of 87.32%, 84.68%,
and 83.51%. The performance of ReSup exceeds all these
solutions. Our ReSup outperforms all of these solutions
and offers an advantage over them by not requiring prior
knowledge or estimation of the noise ratio to carefully tune
the parameters for optimal performance.

4.7 Experiments on Real Noisy FER Dataset
To validate the effectiveness of our proposed method, Re-
Sup, we conducted experiments on a real-world noisy Facial
Expression Recognition (FER) dataset, namely ExpW [64],
which contains a significant number of low-quality anno-
tations. We trained our models on this dataset and eval-
uated their performance on the test sets of ExpW and
RAF-DB. The experimental results demonstrate the supe-
rior efficacy of our ReSup approach (73.12%/75.65%) com-
pared to the ResNet-18 baseline (67.87%/71.77%), POSTER
(70.96%/73.04%) and EAC (71.01%/73.96%).

4.8 Extended Experiments Based on the Similarity Dis-
tribution
We observed that leveraging the statistical characteristics
of the similarity distribution can contribute to achieving
more equitable outcomes. Specifically, the similarity values
of clean samples in easier classes tend to be closer to 1,
while those of noisy samples are closer to 0, resulting
in higher variance of similarity for samples in the easier
classes. Conversely, harder classes exhibit lower variance
due to their inherent learning difficulty. To address this, we
propose dividing the estimated importance weight by the
variance of the corresponding class, thus obtaining a bal-
anced importance weight. The effectiveness of this approach
is demonstrated in Figures 9(a), 9(c), 9(b), and 9(d), where
a more balanced performance is achieved with only a slight
degradation in overall accuracy, both for the original and
synthetic noisy datasets.

4.9 Experiments on Asymmetric Label Noise
The majority of previous approaches have primarily focused
on evaluating their performance under symmetric noise,
where all samples are mislabeled with equal probability
across all labels. However, to address the more realistic
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(a) Confusion matrix of the proposed ReSup. (b) Confusion matrix of ReSup under 30% noise.

(c) Confusion matrix of ReSup using balanced importance
weights.

(d) Confusion matrix of ReSup under 30% noise using balanced
importance weights.

Fig. 9. Confusion matrices on RAF-DB, the overall accuracy of Figure 9(a), 9(c), 9(b), and 9(d) is 89.21%, 88.76%, 87.03% and 85.59%, respectively.

TABLE 4
Comparison with other state-of-the-art noisy label FER schemes on

RAF-DB with the setting asymmetric noise.

Method Accuracy

Baseline 82.72%
SCN [6] 83.10%
RUL [9] 84.24%
Ours 86.94%

scenario of asymmetric noise [33], where different classes
have varying probabilities of being mislabeled, we con-
ducted additional experiments. For instance, emotions such
as happy and neutral are typically less prone to mislabeling,
whereas surprise and fear are more likely to be confused
due to their similarity in terms of mouth opening. In our
experiments, we intentionally did not introduce noise to
the happy and neutral classes. However, the surprise, anger,
disgust, sadness, and fear classes were relabeled with prob-
abilities of 10%, 20%, 30%, 40%, and 50%, respectively, using
a uniform distribution across all expressions. In this case, by
employing the balanced importance weights, we compared
our proposed ReSup approach with two existing methods
that have released code. The results, as presented in Table 4,

clearly indicate the superiority of our solution over both
SCN [6] and DUL [9].

4.10 Experiments on Different Network Structures

TABLE 5
The influence of different backbones on ReSup. We carry out

experiments on RAF-DB and ∗ means baseline.

Noise MobileNet ResNet18 ResNet50 VGG16

20%∗ 74.54% 74.25% 76.01% 72.49%
20% 84.49% 84.55% 86.86% 83.28%
30%∗ 68.52% 68.19% 68.87% 66.33%
30% 83.57% 82.76% 85.24% 82.50%

We conducted experiments using different network
structures (MobileNet, ResNet18/50 and Vgg16), as pre-
sented in Table 5, where all networks were pre-trained
solely on ImageNet. Our proposed scheme demonstrated
effectiveness across diverse network architectures.

4.11 Experiments on DivideMix
To evaluate the proposed similarity-based label noise mod-
eling approach, we performed experiments on the CIFAR10
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Fig. 10. Comparison of using loss and similarity to model label noise
in DivideMix on CIFAR-10 with 80% noise. DivideMix and DivideMix-Si
means using loss and similarity to model label noise, respectively.

dataset using DivideMix [46] as the baseline, which is the
current state-of-the-art loss-based label noise modeling and
correction method. We replaced the noise modeling method
in DivideMix with the proposed similarity-based approach
and conducted experiments for 300 epochs. The results
presented in Table 6, demonstrate that our similarity-based
approach outperforms the loss-based approach.

DivideMix determines the cleanliness of a sample by
utilizing a fitted noise model and employs mixup data
augmentation to improve its noise suppression capabilities.
Moreover, it uses a semi-supervised technique to assign
pseudo-labels to noisy samples to address the challenge
of data size reduction caused by noisy labels. To further
test the efficacy of the proposed similarity-based label noise
modeling method, we removed the semi-supervised module
of DivideMix and performed experiments on the CIFAR-10
dataset with 80% noisy labels. The performance metrics, as
depicted in Figure 10 also demonstrate that the proposed
similarity-based noise modeling approach outperforms the
previous loss-based approach.

TABLE 6
Comparison of using loss and similarity to model label noise in
DivideMix on CIFAR-10 with symmetric noise. DivideMix and

DivideMix-Si means using loss and similarity to model label noise,
respectively.

Method/Noise 20% 50% 80% 90%

DivideMix 95% 93.7% 92.4% 74.2%
DivideMix-Si 95.7% 94.5% 93.3% 76.9%

4.12 Experiments on CIFAR10 and CIFAR 100
The generalization performance of ReSup was evaluated on
two widely used datasets, namely CIFAR10 and CIFAR100,
using the ResNet18 and the 7-layer CNN utilized in Jo-
CoR [19] for a fair comparison. Specifically, we employed
the Adam optimizer with an initial learning rate of 0.001 and
decayed the learning rate by a factor of 0.1 at the 50th, 100th,
and 150th epochs for the 7-layer CNNs. For the ResNet18
network, we used the SGD optimizer with an initial learning
rate of 0.1, and the learning rate was decayed to 0 from the
100th to the 200th epoch. The training process was run for

a total of 200 epochs with a batch size of 128. ReSup was
applied to suppress noise starting from the 3rd epoch for
the 7-layer CNN and from the 80th epoch for ResNet18.

Table 7 and 8 present the experimental findings. The
results indicate that ReSup has an edge over the existing
method even when used with a shallower neural network,
demonstrating its effectiveness for non-FER tasks. However,
it should be noted that ReSup performs poorly on CIFAR100
with high noise ratios due to the limited number of accurate
samples per category. In such scenarios, Co-learning [70]
provides an advantage by enhancing information acquisi-
tion through a self-supervised approach.

5 CONCLUSION

In this paper, we have proposed ReSup, a novel approach
for tackling the problem of noisy label FER. Our method
consists of two key components: label noise modeling and
noise-robust learning. The former enables us to reliably
model the label noise in FER, while the latter allows us to
mitigate the negative impact caused by unreliable weights
and learn from noisy datasets. Extensive experiments on
three public datasets have demonstrated the effectiveness
of our approach, which outperforms several state-of-the-art
FER methods. Our approach is also shown to be effective
on various network structures and able to generalize well
to other datasets. Overall, our work provides a promising
solution for improving the performance of FER models in
the presence of noisy labels.
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