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Target-Oriented WiFi Sensing for Respiratory
Healthcare: from Indiscriminate Perception
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Abstract—Driven by the vision of integrated sensing and
communication (ISAC) toward 6G technology, the WiFi-based
respiration sensing approach has emerged as a highly competitive
candidate for advanced healthcare services. Nevertheless, the
indiscriminate perception of all the moving objects within the
sensing area raises challenges for system stability and robustness
for real-world deployment, especially for the susceptibility to
motion interference from other people. Meanwhile, thanks to the
emerging in-area wireless sensing technologies, i.e., beamforming,
the dynamic environment tolerance of these technologies gives
crucial opportunities for target-oriented WiFi-based healthcare
services. This article discusses the compelling intersection of in-
area WiFi sensing and the future of target-oriented intelligent
respiratory healthcare network services. We first present a novel
WiFi-based healthcare-assisting framework tailored for inter-
user motion interference-tolerable (IMIT) sensing. The detailed
components of low-level signal preprocessing, target-direction
signal extraction, and healthcare-related services are discussed.
By utilizing CSI beamforming technology, which adjusts a direc-
tional beam toward the desired direction and adaptively places
beam nulls in noisy directions, we can mitigate motion interfer-
ence and achieve target-oriented healthcare sensing. Finally, we
discuss open challenges and potential solutions for target-oriented
WiFi healthcare sensing.

I. INTRODUCTION

To provide highly integrated and widespread applications
for six-generation (6G) integrated sensing and communication
(ISAC), the radio frequency (RF)-based solutions have been
envisioned as a compelling approach for advanced ubiquitous
healthcare services, where people are no longer bound by the
attached sensors [1]. Basically, RF-based approaches utilize
ambient radio signals, e.g., Frequency-modulated continu-
ous wave (FMCW), mmWave, radio-frequency identification
(RFID), and WiFi, to capture human movements and interpret
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them into health status data. Among all of them, the WiFi-
based solution has become a competitive candidate since it is
ultra-dense deployed, low cost, privacy preservation, and less
susceptible to line-of-sight (LoS) occlusions compared with
other short-wavelength RF-based solutions [2].

While showing promising progress, existing WiFi-based
healthcare systems are still not yet suitable for practical
deployment [3]. One of the main reasons is their indiscriminate
perception of all the concurrent non-target moving objects
within the sensing area. In such cases, the WiFi channel state
information (CSI) tends to capture all motion information
within the sensing area, which inevitably leads to potential
indistinctness [4], [5]. Traditional WiFi-based systems assume
a stationary environment to avoid motion interference from
other interferes. However, such a strong assumption may
not be reasonable, given that dynamic motion interference is
pervasive in practical environments.

Recently, thanks to the emerging in-area wireless sensing
technologies [6]–[9], which empower WiFi sensing systems
the ability to resist motion interference from non-target indi-
viduals, the WiFi-based healthcare system has the potential
to achieve a new level of target-oriented sensing. The key
to target-oriented sensing is to enhance the sensing capacity
to focus on the intended target from the area of interest
by isolating and capturing target-specific signals in motion
interference-prone environments. For instance, by quantifying
the physical separability of motion signals from multiple
moving objects [7], [8], or expanding the bandwidth of WiFi
signals [9], the motion interference from non-target areas
can be mitigated. However, these methods either require a
small distance between the target and the WiFi sensor or
a sufficient distance between the non-target individuals and
WiFi sensors, which may not be applicable to real-world
scenarios. There also has been a growing interest in leveraging
compressed beamforming reports (CBR) for WiFi sensing
[10]. Nevertheless, considering that CBR provides only partial
and compressed channel information, the coarse-grain data
may pose challenges in accurately extracting target signals
within complex and dynamic environments.

To loosen the restrictions of stationary environments and tol-
erate non-target individuals from carrying out their activities,
we propose an inter-user motion interference tolerable (IMIT)
framework that integrates beamforming technologies into WiFi
sensing systems. Through the adjustment of array weights
to control signal directionality, the beamforming approach
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Fig. 1: The hierarchical architecture of target-oriented WiFi healthcare service. Parts (a) and (b) show the normal sensing scenario and
complex scenarios with inter-user motion interference, respectively. Part (c) depicts the steps involved in mitigating motion interference,
while part (d) illustrates the communication between public healthcare services and local healthcare services.

enables the development of a target-oriented wireless sensing
system. In this sense, the paradigm of the WiFi healthcare sys-
tem shifts from indiscriminate sensing toward target-oriented
directional sensing, which can efficiently mitigate motion
interference and reconstruct the motion signal of the target
user to complete a respiratory health-assisting task.

II. IMIT ARCHITECTURE FOR TARGET-ORIENTED
HEALTHCARE SERVICES

As depicted in Fig. 1, the hierarchical IMIT architecture
comprises a global medical service network, N local WiFi
sensor nodes, and M resource pools. More specifically:

Global Medical Service Network: The global medical
service network serves as the backbone of our framework,
which provides centralized management and allocation of pub-
lic healthcare services on a global scale. Similar to the large-
scale network [11] described in existing literature, the global
medical service network contains comprehensive healthcare
data spanning entire regions or even wider areas. Both static
data, e.g., patient records and medical facility information,
and dynamic data, e.g., real-time patient vital signs, are
collected and managed by the network. Moreover, instead of
communicating with users directly, the network is periodically
updated with data from local WiFi sensor nodes distributed
across various healthcare facilities and communities.

Local WiFi Sensor Nodes: In our framework, each health-
care facility or community is equipped with local WiFi sensor
nodes that are responsible for local healthcare data collec-
tion and target-specific signal extraction. The extracted target
signal, along with the patient’s identification, is continuously
updated to the resource pools. These nodes operate on existing
communication infrastructures and maintain close proximity

to end-users. By leveraging target-oriented spatial filtering
techniques, these nodes can effectively extract target health-
related signals even in the presence of non-target individuals.
Moreover, the hierarchical structure of the framework enables
direct communication between recourse pools and local WiFi
sensor nodes, minimizing latency and optimizing data trans-
mission efficiency.

Resource Pools: The virtual resource pools consist of phys-
ical entities equipped with sufficient computing and storage
resources, e.g., WiFi sensing controller servers acting as edge
servers. It performs an initial evaluation of user health status
by analyzing the extracted target sensing data from local
WiFi nodes, and subsequently transmits the evaluation results,
along with user information, to the global network for in-
depth analysis. Furthermore, by consolidating resources at the
edge of the network, it optimizes physical sensing resource
allocation and enhances scalability, ensuring seamless delivery
of WiFi sensing services to end-users.

In the WiFi-based IMIT architecture, the global medical
service network collects massive amounts of patient health
information and deploys them on global databases, which
serve as a valuable reference for the allocation of public health
resources. Therefore, it has potential applications in areas such
as respiratory infectious disease surveillance and prevention,
cross-institutional medical collaboration, and remote health
monitoring, where massive patient health data in a wide region
is required. Moreover, in the event of an urgent health issue,
e.g., respiratory arrest, the system provides timely alerts to get
medical support. Note that the environments for WiFi sensors
are more likely to have more than one person present at the
same time in the real world. Thus, the target-oriented spatial
filter plays a crucial role in our framework.
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III. CONCEPTION, SCENARIOS, AND CHALLENGES

To enable IMIT architecture, it is imperative to ensure the
robustness of local WiFi sensor nodes against motion inter-
ference in complex environments. Let us start by introducing
the concept of motion interference and then elaborate on its
typical scenarios.

A. Why does Ambient Motion Interference Matter?

Basically, the concept of motion interference in wireless
sensing could refer to the disturbance caused by the movement
of non-target individuals or objects within the WiFi sensing
area when performing wireless sensing tasks. When these
movements occur, the interfering signals induced by non-target
individuals superimpose with the intended target signals and
may distort or even overlap with the desired target signal.

Furthermore, despite the similarities with existing radar
systems, the challenges are much greater for WiFi systems
due to the inherent differences between these two types of
systems. Firstly, different from the superior spatial-temporal
resolution of radar systems, the limited bandwidth of WiFi
channels (e.g., 20/40 MHz in 802.11n protocol) makes it
challenging to distinguish the target individual-induced paths
from other noisy paths in the environments [9]. Moreover,
WiFi sensing systems often operate in rich-reflective indoor
environments, where the presence of motion interference from
multiple obstacles and reflectors is inevitable. Therefore, the
development of motion interference mitigating techniques is
essential and valuable.

B. Typical Motion Interference Scenarios

In line with the most recent scientific works, we try to cope
with four typical motion interference scenarios based on the
source of motion noise, as illustrated in Fig. 2.

Inter-user Motion Interference: This occurs when multi-
ple subjects are present within the same sensing area, where
the signals induced by the irrelevant motion of non-target
individuals interfere with the desired target motion signal. Due
to the uncertain locations of the non-target interferers, it is
important to adaptively filter out the motion noise components
from the received signal.

Self-motion Interference: While conducting health mon-
itoring, the irrelevant movements of the targets themselves
could potentially obscure the desired motion data. During
the sensing process, the received signal contains not only
information on target motion but also irrelevant self-motion
interference (e.g., the action of leaning or moving limbs).
These self-motion actions may cause a sudden fluctuation and
lead to an overestimation of the respiration rate.

Device Motion Interference: Device motion factors in the
environment, such as the vibrations of devices, can introduce
motion noises that contaminate the desired signals. For in-
stance, when we place a WiFi sensor on a moving robot or hold
it in hand, the movements of a WiFi device can significantly
affect the accuracy of the sensing system [12].

Hybrid Motion Interference: Hybrid motion interference
occurs when multiple types of interference occur simultane-
ously. For example, when we monitor a driver in a moving
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Fig. 2: The hierarchical design for target-oriented WiFi sensing.

car, the received signals are the superimposition of both the
device’s motion interference and the self-motion interference.

In this article, we mainly focus on inter-user motion inter-
ference to grant non-target individuals the freedom to carry
out their activities and realize target-oriented WiFi sensing.

C. Does Conventional Beamforming work for it?
When it comes to the inter-user motion interference issue

in wireless sensing systems, a reliable and direct approach
is beamforming, which is also known as spatial filtering.
The basic idea of beamforming is to strengthen the signal
from a specific direction while suppressing the signals from
other directions. However, due to the inherited difference
(e.g., spatial-separated transceivers) between WiFi and radar
sensing systems, it may not be feasible to apply beamforming
technology directly to WiFi sensing systems. Therefore, we
ask the question: does conventional beamforming be applied
to commodity WiFi sensing systems to address the inter-user
motion interference issue?

Drawing upon the signal processing method detailed in
[13], we explore the feasibility of CSI beamforming and
identify the challenges when implementing CSI beamforming
on commodity WiFi devices as follows:

• Time-varying Phase Offsets. The raw CSI data collected
by commodity WiFi receiver contains time-varying phase
offsets, i.e., packet detection delay (PDD), sampling fre-
quency offset (SFO), central frequency offset (CFO), etc
[14]. Unfortunately, since beam generation requires pre-
cise synchronization across the time domain, the presence
of those offsets can disrupt the constructive interference
needed for beamforming.
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• Deviations to Main Lobe Direction. Besides the time-
varying phase offset, there is still a random time-invariant
π phase offset between receiver antennas, which is mainly
caused by the phase lock loop (PLL). This lack of
alignment of between-antenna phase data results in large
deviations of main lobe direction and reduced interference
suppression capabilities. Interestingly, as illustrated in
Fig. 4, the π-shift phase offsets remain constant after each
reboot of the WiFi receiver [15].

• Side-lobe Interference. Beamforming algorithms rely on
a sufficient number of antennas to generate a narrow and
focused beam. With a limited number of antennas, the en-
ergy of side lobes is relatively high and is non-negligible.
When the interferers appear in side lobe directions, the
weak respiration signal may be buried in strong motion
interference signals, leading to performance degradation.

IV. ENABLING TECHNOLOGIES

To loosen the restrictions of stationary environments and
tolerate non-target individuals from carrying out their activ-
ities, we propose to add a target-oriented spatial filtering
module before the estimation of health-related information.
The system is mainly composed of three modules: low-level
data prepossessing, target signal extraction, and healthcare-
related services. The system pipeline is shown in Fig. 3.

Stage 1: Low-level Signal Preprocessing: Generally, the
data preprocessing process involves four steps: outlier removal,
time-varying phase offset elimination, subcarrier selection, and
smoothing. First, we remove the outliers and then eliminate the
time-varying phase offset by adding a constructed reference
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channel [14]. To construct the reference CSI, we calculate
the FFT of the combined CSI phase over a time window of
20 seconds and further calculate the energy of human motion
by the energy sum of FFT bins in the range of 0.1-20 Hz1.
The optimal weight W ∗ is obtained by minimizing the human
motion energy. Once the optimal weight W ∗ is obtained, we
constructed the reference CSI based on href = W ∗HX ,
and divided it to each antenna to eliminate the time-varying
phase offsets. We then select the most sensitive subcarrier that
contains the most respiration energy (i.e., the energy within
the respiration frequency range). Afterward, we utilize the
Savitzky-Golay filter to filter out the high-frequency noise.

Stage 2: Target-direction Signal Extraction: According
to the previous section, the between-antenna phase shift can
also induce a large deviation in the beam direction. Thus,
before performing DN-BF to mitigate the motion interference
of other interferers, we propose a beam direction corrector
(BDC) algorithm to compensate for the between-antenna phase
shift. The initial PLL phase offsets of a certain antenna element
are two possible constant values (i.e., π and 0):

|βi − βj | = π, (1)

where βi and βj represent the initial phase of the ith and
jth antenna at the same receiver, respectively. Once the PLL
phase offset values are determined, they are long-term valid
until the WiFi devices are restarted. Assume that the input
of the algorithm is the time-varying phase offset calibrated
CSI sequence, which is denoted as H = (ĥ1, ĥ2, · · · , ĥM ).

1The normal range for human respiration rate is 0.1-0.5 Hz, while human
activity frequencies range from 0-20 Hz.
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The strategy of phase compensation is based on the following
insight. When the phase offset in each RF chain is correctly
compensated, the CSI values between the 2nd to M th antenna
and the 1st antenna exhibit the highest similarity.

Afterward, to address the side-lobe interference issue, we
design a Directional Nulling BeamForming (DN-BF) scheme
that can adaptively suppress the motion interference via the
null scan scheme. During the beam null scan process, the
CSI array sequentially directs the beam null towards different
directions while constraining the main lobe to zero-degree of
the target direction. Assume that the target is located within
a fixed region (e.g., directly facing the antenna array with
an incidence angle of 0°), while the direction of non-target
motion interference is unknown. Specifically, we direct the
main lobe to the target direction (i.e., θT = 0°) while scanning
the directions ranging from −90° to 90° with beam nulls (at a
step size of 1°). We employ an optimization algorithm to find
the optimum weight of DN-BF. The optimization function is
as follows:

w∗ = argmin
w

(c1 · |wHa(θI)| − c2 · |wHa(θT )|) (2)

where w∗ denote the beamformer weight vector to be opti-
mized, (·)H is the conjugate transpose process, |wHa(θ(·))|
represents the gain of a specific direction θ(·), c1 and c2 denote
scale factors to constrain the main lobe steered towards θT .
Here, we set the c2 to about approximately ten times c1.

Once the w∗ is obtained, we multiply the denoised CSI
signal by the corresponding weight of DN-BF for each direc-
tion. For each direction, DN-BF establishes a beam pattern
that enhances the strength of reflected signals from the zero-
degree target direction while suppressing signals from that
interfering direction. By further analyzing the respiration en-
ergy of each scanned signal in different directions, we can
adaptively find and eliminate the motion interference from
interfering directions. While the DN-BF adjusts the positions
of beam nulls and modifies the beam patterns, the angular
resolution has undergone limited variations. Specifically, the
angular resolution of conventional time-delay beamforming
is approximately ∆3dB ≈ 2/(N · d/λ) = 38.2◦ with half
wavelength-spaced three antenna elements. In contrast, the
DN-BF achieves -20 dB to -40 dB suppression in the noise
direction through beam nulling, while maintaining angular res-
olution nearly unchanged (from 30.5° to 44°). After obtaining
the DN-BF processed beamformed CSI for each direction, we
calculate the unwrapped CSI phase information as candidate
waveforms and select the most sensitive waveform for health
state estimation.

Stage 3: Healthcare-related Services. After the above two
stages, this step is straightforward. The robustness to motion
interference can be employed for various WiFi healthcare
applications, both for in-home and clinical healthcare scenar-
ios. As illustrated in Fig. 2, for in-home regular healthcare
scenarios, the patient may want to conduct their health status
check without being interfered with by their family members
or pets moving around. When it comes to clinical healthcare
scenarios, extracting the target motion signal in dynamic
environments will be beneficial for local wireless healthcare

monitoring. Furthermore, the health information collected by
target patients can ultimately serve as valuable reference
information for public medical hospital allocation.

V. CASE STUDY: IN-AREA RESPIRATION SENSING FOR
TARGET-ORIENTED HEALTHCARE

In this section, we show some experimental results for
different inter-user motion interference intensities and deploy-
ments of WiFi sensor nodes in WiFi-based respiration sensing.

As illustrated in Fig. 6 (c), we place the antennas of Tx and
Rx at a distance of 1.5 m apart, with the target person being
monitored in front of the Rx. We put the target person at 0°
and the interferer at 30°, −45°, 45°, and 60°, respectively. All
the transceivers are off-the-shelf mini-PCs equipped with an
Intel 5300 wireless NIC and are held up at a height of 100 cm,
corresponding to the ergonomic sitting and breathing level of
users.

In the first experiment, a non-target participant performs
different types of activities (i.e., keeping stationary, hand-
waving, and stepping) to represent the three levels of motion
interference intensity, and a target subject is sitting in front
of the WiFi receiver array. The interfering activities are as
follows:

• Minor motion interference: the non-target participant
sits in close proximity to the target participant, with
his/her subtle respiratory motions serving as the source
of motion interference.

• Moderate motion interference: the non-target partici-
pant performs hand-waving as the motion interference,
where his/her arm motion is towards the WiFi receiver.

• Severe motion interference: the non-target participant
stands in close proximity to the target person and per-
forms stepping interference involving both arm and leg
movements simultaneously.

As illustrated in Fig. 6 (a), we achieve a median error lower
than 0.5 bpm for all types of interference motion. However,
it might be counterintuitive that the accuracy of moderate
interference (hand-waving interference) is comparatively lower
than that of severe interference (stepping interference). This
might be attributed to the high similarity between CSI vari-
ations induced by hand-waving and respiration, which may
result in respiration energy observed in both the target and
interfering directions. We also demonstrate the efficacy of
employing our proposed methods, i.e., DN-BF and BDC.
The absolute errors without the BDC for these three types
of motion interference are 0.59 bpm, 0.51 bpm, and 0.23
bpm, respectively, while the mean absolute error without
the DN-BF for these three types of motion interference is
0.72 bpm, 0.37 bpm, and 0.71 bpm, respectively. Compared
with respiration monitoring with both BDC and DN-BF, the
system performance in motion-interference scenarios declines
significantly. In summary, all these results have demonstrated
the effectiveness of the BDC and DN-BF for target-oriented
respiration sensing.

To further evaluate the system’s robustness across different
WiFi sensor deployments, we perform experiments with differ-
ent deployments and positions of WiFi sensor nodes. Specif-
ically, we evaluate two primary scenarios: 1) the interferer
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positioned at varying angles relative to the WiFi sensor and
2) the interferer positioned on either the left or right side of
the sensing device.

In the first scenario, the interferer is placed at 30°, 45°, and
60°. To maintain other factors constant, we instruct both the
target person and the interferer to engage in natural breathing.
As illustrated in Fig. 6 (b). The system errors decrease as
the separation angle increases. When the subjects get closer,
the interference nulling ability of DN-BF declines. The reason
behind this is that when the direction of nulls is small enough,
the main lobe width of DN-BF will not continue to shrink to
ensure that the gain in the target direction is high enough to
extract the target signal.

In the second scenario, the interferer is put at the same
separation angle but on a different side of the WiFi receiver
(i.e., counterclockwise or clockwise). We vary the separation
angle while keeping other factors unchanged (i.e., −45° and
45°). The MAE under these settings is 0.38 bpm and 0.16
bpm for the left and right sides, respectively. Comparing
the two experimental settings, the interferer is in the right
direction, which leads to a comparatively weaker interference.
This is because of the physical separation of the WiFi device
transceiver. When the interferer is located away from the
transmitter, the reflected signal caused by the interference
exhibits a smaller magnitude, thereby leading to diminished
interference to the system.

VI. LIMITATIONS, CHALLENGES, AND OPEN ISSUES

Although some of the motion interference issues in WiFi-
based healthcare sensing have been discussed above, there still
remain some challenges to be addressed as follows:

Co-directional Motion Interference: The key of our sys-
tem is leveraging beamforming technology to extract the signal
from the desired direction while suppressing the motion noises
from other directions. However, an inherent characteristic of
beamforming is that it cannot identify the motion noise from
the co-direction of the target direction. When the interferer and
the target person are in the same direction with respect to the
antenna array, it is difficult to separate the signals of the target
individual and interference. One potential method is the joint
estimation of AoA-ToF (Angle of arrival-Time of Flight). By
leveraging both angle and distance information, this method
can differentiate signals from multiple sources, even when they
are in the same direction. However, due to the limited antenna
number of existing commodity WiFi devices, it may encounter
challenges in generating high-resolution AoA-ToF maps.

Interference Management: In the proposed schemes, we
have solely considered inter-user motion interference with a
single target human scenario. When extending to other mo-
tion interference scenarios (e.g., hybrid motion interference),
further investigation is required to address the challenge of
low resolution in WiFi signals, and countermeasures should
be tailored accordingly based on the specific type of motion
interference. Fortunately, thanks to the advancements in ISAC
hardware and software platforms for WiFi systems, WiFi
radars are equipped with more antennas. We expect WiFi
sensing systems to achieve better anti-motion interference
performance in the future with more hardware capabilities and
high-quality CSI measurements.

Potential for Other Application Scenarios: This study has
focused on evaluating the target-oriented sensing performance
in a respiratory monitoring application, but it also has potential
applications in various healthcare fields, such as sleep mon-
itoring, chronic respiratory disease management, etc. These
applications require consistent, long-term health monitoring
but inevitably encounter motion interference from non-target
individuals. By leveraging motion-interference filtering based
on DN-BF, the system can focus on individuals within defined
target areas, filter out extraneous motion, and achieve high
accuracy and reliability performance even in complex, multi-
person settings. Furthermore, as WiFi-based sensing tech-
nology advances with wider bandwidths and larger antenna
arrays, the target-oriented sensing framework is expected to
become more robust to resist motion interference in complex
real-world scenarios.

VII. CONCLUSION
In this article, we propose an inter-user motion interference-

tolerant (IMIT) framework for WiFi-based target-oriented
healthcare sensing, which employs adaptive CSI beamforming
as the inter-user motion interference filter. More specifically,
we discussed the causative factors of performance degradation
in typical interfering scenarios, including inter-user interfer-
ence, self-motion interference, device motion interference, and
hybrid motion interference. We outline the IMIT framework
and pinpoint its enabling technologies and challenges. Case
study experiments verify the feasibility and benefits of our
proposed framework. We hope that our work can spur interest
and fascinate the practical deployments of WiFi-based health-
care services.
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