Compressed Representation for 3D Human Pose
Estimation using WiFi signal

Qijia Zheng"2, Bin Liu’2®™) Jingyang Huang?®, and Nenghai Yu'!-?

! University of Science and Technology of China, Hefei, China
flowice@ustc.edu.cn
2 Key Laboratory of Electromagnetic Space Information, Chinese Academy of
Sciences, Hefei, China
3 School of Computer and Information, Hefei University of Technology, Hefei, China

Abstract. Human pose estimation technology has been increasingly ap-
plied in many fields, such as user authentication, activity recognition,
and health monitoring. The existing human pose estimation methods
are mainly based on cameras and wearable sensors, while some works
try to use WiFi signal to perceive fine-grained human joints in recent
years. WiFi antennas collects 1D WiF1i signal, while final outputs are 3D
images containing human joints. However, directly mapping 1D WiFi
signal to 3D image with human skeletons has limitations such as degree
of accuracy and high costs of computation resources. In this paper, we
present a novel approach to bridge the gap between WiFi signal and im-
ages for single person 3D human pose estimation using commercial WiFi
devices, named CRPose. We propose to use high resolution heatmap to
model joint locations, devising an effective compressed method to extract
the posture information embedded in 1D WiFi signal. CRPose takes the
1D WiFi data as input and supervised by a teacher network, which out-
puts the dense representations of 3D human postures. Our experimental
evaluation shows that our method on a real-world WiFi sensing testbed
with distributed antennas performs favorably when compared to state
of the art methods on WiFi-based 3D human pose estimation. CRPose
can localize each joint on the human skeleton with an average error of
5.1cm, achieving a 55% improvement in accuracy and a 64% time saving
in inference stage over the state-of-the-art posture construction model
designed for radio frequency radar sensors.

Keywords: Wireless sensing - Human pose estimation - Channel state
information

1 Introduction

In recent years, Human Pose Estimation (HPE) has seen significant progress, as
well as wireless sensing system, mainly thanks to machine learning technique.
HPE is considered promising in many scenarios such as patient activity monitor-
ing in hospital and suspicious behavior detection in public places. Camera based
HPE methods are more pervasive due to intuitionistic and abundant informa-
tion of images, while posing a significant risk of leaking sensitive information to
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users, thereby bringing a threat to users’ privacy. The methods based on radar
sensors and WiFi sensors are able to monitor users without collecting visible
information of human body, thus protecting their privacy. However, it has been
found that radar based solutions are too expensive to be truly deployed in daily
life.

In the meantime, various WiFi sensing systems and algorithms have been
proposed to track the position of the monitored human subject and recognize
people’s activities through analyzing the signals reflected off and penetrated
the human body. With the localization and recognition accuracy progressively
increased, some pioneer study offers fine-grained human body sensing system
solution[2,3], demonstrating that with the supervision of visual information, ra-
dio frequency (RF) signals can be used to generate 2D and even 3D skeletal rep-
resentations of the human body. By overcoming the technical challenges faced
by traditional camera based and dedicated radar sensors based human percep-
tion solutions, such as occlusion, poor lighting, privacy issues, as well as cost,
WiFi signal based human pose estimation technique demonstrates the potential
to enable a new generation of applications capable of supporting more sophis-
ticated human monitoring and interactions. However, mapping 1D WiFi Signal
to 2D/3D images in an end-to-end manner is an ill-posed question[9]. Thereby,
a fundamental question rise: How to efficiently extract the human activity in-
formation in WiFi signal? To answer this question, we propose to make use of
the pervasive WiFi devices, and “image” 3D human postures from WiFi signals.
More specifically, we aim to predict 3D human pose composed of 14 joints (i.e.,
head, left ankle and right shoulder) and then associate them into 3D skeleton
(i.e. arms and legs) of human body. And, we present a novel strategy to repre-
sent WiFi data and train our neural network. We empirically follow the intuition
that remapping the ground truth to an compressed intermediate representation
is able to efficiently extract the spatial information from sparse WiFi signal. For
this purpose, self-supervised networks such as autoencoders represent a natural
choice for searching for intermediate representation. The core of our proposal
relies on the creation of an alternative ground-truth representation that pre-
serves the most informative content of the original ground-truth. Specifically,
our WiFi-based HPE pipeline consists of two modules: At first, the pre-trained
teacher network is leveraged to obtain a denser representation of the WiFi sig-
nals. This new compressed representation is used as the target ground-truth
during our network training. Then, at inference stage, input WiFi signal is fed
into model and predict the keypoints of human body. To summarize, the main
contributions of our proposal are:

— We build a sensing system using commercial WiFi devices and a web camera
to simultaneously collect Channel State Information(CSI) and images with
the synchronization error less than 1ms.

— A two stages deep learning framework based on autoencoders framework is
proposed to map WiFi signal to human joint coordinates.
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— We propose a simple and effective method that maps sparse CSI to more
denser representation, which saves computational resources while extracting
most of the informative content from WiFi signal.

The rest of this paper is organized as follows: First, we take a review of
related works in section 2. Next, we give an overview of the system design and
describe the proposed deep learning framework in sections 3. Then, evaluation
of the system is presented in Section 4. Finally, we conclude our work in Section
5.

2 Related Work

Human pose estimation refers to the detection of important body joints or key
points from images or videos. At the same time, associating the detected key
points to form the joints of human body is also an important step after de-
tecting these key points. In this section, we will briefly introduce some popular
HPE methods in recent years, which can be divided into camera-based, wearable
sensor-based and RF-based methods.

Camera-based. Considering the number of people in the image or video
frame, single person pose estimation and multi person pose estimation can be
distinguished [8]. Single person pose estimation only involves predicting the pose
of a single person in the entire image or video. The multi person pose estimation
task is more challenging, as the position of the arms or limbs in the image is
unknown. To solve this problem, the most commonly used methods are: (1)top-
down method, which is the easiest method for human detection; Predict each
person’s body parts and calculate posture; And (2)a bottom-up approach, in-
cluding detecting all human parts in images or videos, and then grouping all
body parts belonging to a specific person. Most recent work has focused on the
design of posture decoders, with increasing emphasis on exploring contextual
information and inherent features of body structure. Toshev et al. [16] proposed
DeepPose, which is one of the first human pose estimation methods based on
deep convolutional neural networks (DCNN). Through a series of pose predictors
based on DCNN, DeepPose formalizes the task of estimating human key point
estimation into a regression problem.

Wearable Sensor-based.The VICON (Vicon Motion Systems) system ac-
tively estimates human body status by wearing optical markers and inertial
sensors on users, while Optitrace uses passive optical markers. These methods
provide accurate results. The main drawback of these systems is the need for a
structured environment. As another example, exoskeleton sensors can accurately
estimate human posture due to their rigid structure and high-quality sensor sys-
tem, but the accompanying drawbacks are high cost and high equipment weight.
Compared to camera based pose estimation methods, these methods perform
better in scenarios such as poor lighting conditions, but they typically have
high costs and are not convenient for daily wear, nor can they be used in un-
structured or outdoor scenes. The above wearable sensor based solution provides
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very accurate pose and motion estimation methods, which can perform well in
unstructured and outdoor environments.

RF-based. Starting from traditional behavior recognition tasks and respira-
tory monitoring tasks[1,4,7,13], the accuracy of RF perception has gradually im-
proved. Zhao et al. [2,3] used Frequency Modulated Continuous Wave (FMCW)
radar for the first time to reconstruct 2D and 3D human skeleton, as well as
demonstrating the ability of this scheme to perceive fine-grained human pose
through wall. Li et al. [10] used FMCW radar to perform human behavior recog-
nition under extreme light (darkness) and occlusion conditions. Although the
radar signal showed amazing results, there is still no publicly available dataset
in the field of wireless signal based attitude estimation, which has led to slow
progress in research on fine-grained perception of wireless signals. To overcome
this problem, Cai et al. [15] proposed a system for human motion perception
using RF signals. This system utilizes recognized human behavior actions to
generate corresponding RF signals in reverse, thereby supplement the training
data for RF-based scheme. For the first time, Wang [9]and Jiang[5]separately
design a 2D and 3D human pose estimation system using commercial WiFi de-
vices, demonstrating the feasibility of 2D and 3D human skeleton reconstruction
using WiF1i signal without dedicated RF sensors. Afterwards, Wang and Ren et
al.[6,11,14] used signal processing methods to design a 3D human pose estimation
system based on WiFi signals.

3 Method

The following subsections summarize the key components of CRPose. Section
3.1 provides a brief overview of the entire WiFi sensing system. Next, in Section
3.2, we describe signal preprocessing methods employed. Finally, Section 3.3
illustrates our proposed neural network which transit the low-dimensional WiFi
signal to the high-dimensional image by generating a compact and more tractable
representation.

3.1 System Overview

In this paper, we aim to accurately estimate the subject’s 3D pose using the WiFi
signals that carry human motion information collected through wireless devices.
As shown in Figure 1, the WiFi signal 3D pose estimation system mainly com-
prises three modules: the Data synchronization collection module, the Signal
Pre-processing module, and the Pose Estimation module. Firstly, To capture
both human body images in indoor and outdoor environments and WiFi data
affected by human body movements, we construct a dual-mode data collection
system comprising multiple WiFi signal receivers, WiFi transmitters, and a sin-
gle RGB camera. Next, the Signal Pre-processing module performs several steps
to enhance the quality of the collected CSI data. It filters the amplitude of CSI
to eliminate small-scale changes in the WiF1i signal that may arise from environ-
mental interference. Additionally, the module eliminates any phase offset present
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in the data. Finally, the pose estimation module proposes a two-stage deep neu-
ral network based on an encoder decoder structure, which extracts temporal
and spatial information from CSI through the pose encoder. The output pose
features obtain pseudo 3D coordinates of key points through the pose decoder;
Finally, combined with the RGB camera internal parameters in the local scene,
the 3D skeleton map of the human body was obtained by reverse projection to
the real world 3D coordinates.
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Fig. 1. System Overview

3.2 Signal Preprocessing

WiFi receivers continuously measure CSI in WiFi NICs, and feed back to trans-
mitters. CSI characterizes the frequency response of wireless channel(CFR), and
can be described as formula.

N
Hfit) = 3 an(t)e 27070, )

where ay,(t) is the complex valued representation of attenuation ,7,(¢) is ,and f
is the carriers frequency.

The CSI stream measurement provided by commercial wireless network cards
is extremely noisy. The source of noise in CSI streams is the internal state tran-
sition between the wireless WiFi network cards of the transmitter and receiver,
such as transmission power adjustment caused by transmission power control
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algorithms, transmission rate adaption caused by transmission rate adaptive al-
gorithms, and changes in CSI internal reference levels. These parameters are
rooted in the MAC802.11 subsystem and serve WiFi communication, with con-
siderable randomness. This type of internal state transition generates high ampli-
tude pulses and burst noise in CSI. In addition to the interference caused by the
aforementioned hardware and software systems on WiFi signals, there are also
various types of noise mixed with WiFi signals when they propagate in space.
For example, multipath effects, shadow fading, and co-channel interference from
other WiFi devices. Eventually, we adopt the Butterworth filter performing low-
pass filtering on the original CSI signal to remove high-frequency noise caused

by such situations.

H(s) = —— @)

2n0'5
1+ (;)

where s is the complex frequency variable. w. is the cutoff frequency, which
defines the point at which the filter attenuates the signal by a certain amount. n
is the order of the filter, determining the sharpness of the roll-off in the stopband.

For phase processing, the raw CSI measurement consist of complex elements
z = a + bi. The phase @ are calculated using formula ¢ = arctan(b/a), and the
phase will be wrapped when the phase value is not included in —7 to 7. So, we
clean the phase by unwrapping the phase using formula below:

A¢l,j = ¢i7j+l - él,]
if A(;Sm- >, Q)i,j+1 = qv)i,j + Aqﬁm- — 27 (3)
if A¢i,j < -, Qpi,j—i-l = éiJ + A(ﬁ@j + 27

3.3 Neural Network

The proposed CRPose deep learning framework is illustrated in Figure 1. Af-
ter signal preprocessing, we transformed the raw CSI data extracted from M
distributed antennas into a sequence of input data, and feed into the CRPose
model to predict 3D human joints. The following subsections present the details
of proposed deep learning framework.

(1) CSI transition module. To bridge the information representation gap
between one-dimensional WiFi data and three-dimensional heatmap data, we
introduce a CSI transition module, as well as the pose encoder, that effectively
maps the input from the CSI domain to the image domain. The input of the CSI
transition module is represented by 5 CSI frames, C, while its output f(C), aims
to predict the intermediate representation obtained with the e(I). CSI contains
both temporal and spatial information, . The specularity of WiFi signals[9] may
lead to the loss of human motion information at a specific frame, resulting in the
loss of human key point information in the heatmap. Therefore, CSI transition
module adopted the Transformer[19] structure to extract the temporal infor-
mation from CSI. Transformer which has achieved excellent performance in the
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Fig. 2. Schematization of the proposed model pipeline. At training time, the Encoder
e produces the intermediate e(I) which are used as ground truth from the CSI feature
extractor f. At test time, the intermediate representation f(I) computed by the CSI
feature extractor is fed to the Decoder d for the keypoints heatmap output.

translation quality of natural language processing(NLP). The Transformer mod-
ule followed the encoder-decoder structure using stacked self-attention and point-
wise, fully connected layers. The model multiplied the input vector with three
different weight matrices to obtain the queries vector(Q), keys vector (K) and
values vector(V). After that, we employ convolutional neural networks(CNNs)
to extract spatial features. In particular, we use one layer of transposed convo-
lution and two convolutions followed by rectified linear functions(ReLU) to add
non-linearity to the model.

(2) Training strategy. Inspired by LoCO[17], our method use volumetric
heatmaps to represent human keypoints locations. Gaussian

_lengl?

Hj(p)=e 7~ (4)

We leverage the encoder-decoder structure based model, which is pre-trained on
the virtual multi-person dataset, to get the ground truth volumetric heatmaps
of human keypoints. This type of ground truth representation called volumet-
ric heatmaps is in a compressed data representation that can efficiently extract
the information and avoid the disadvantages embedded in sparse WiFi signal.
The goal of our proposed training strategy is therefore to learn a compressed
representation of the input volumetric heatmaps that preserve human pose in-
formation content, which results in the preservation of the position of the various
joints in the original maps. We trained the CSI transition module by minimizing
the MSE loss betweenf(C) and e(I), where I is the image associated with the
CSI, C.

(3) Pose decoder. The Pose Decoder aims to decode the compressed vol-
umetric heatmaps to final keypoints heatmap output. At inference time, the
pseudo-3D coordinates of human joints are acquired from Pose Decoder through
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a local maxima search. With the intrinsic camera parameters, the true coordi-
nates of the joints can be recovered. Then, Pose Decoder aims to decode the
compressed representation of CSI transition module to keypoint heatmaps. We
use 14 joints representation for . Furthermore, human pose estimation method
based on cameras may encounter prediction failure cases and joint positioning
errors when predicting the final joint points due to the probability of lighting,
occlusion. Pose estimation models based on WiFi also face similar problems.
During the transmission process of WiFi signals, the superposition of WiFi sig-
nals caused by multipath effects at the receivers blurs the CSI measurement,
which may result in missing joints cases. We further adapt a MLP network to
refine the predicted 3D poses.

4 Experiments

4.1 Testbed

Data Collection and Annotations. Our WiFi testbed consists of one WiFi
router and three laptops. These devices are divided into two group, one for
IEEE802.11n WiFi data collection, another for IEEE802.11ax WiFi data col-
lection. T'wo laptops are equipped with Intel 5300 wireless NIC connected with
three antennas. One laptops are equipped with Intel AX200 wireless NIC con-
nected with two antennas. We use the WiFi router as the transmitter and lap-
tops as receivers. On our testbed, Linux 802.11n CSI tools[20] are used to log
IEEE802.11n CSI data and PicoSence to log IEEE802.11ax CSI data. We enable
the transmitter to send ICMP packets to the receivers. Thus, all the receivers
can simultaneously receive packets from the transmitter. WiFi signals are set
on channel 5 GHz where there is little interference from other devices. The
packet rate is set at 100 packets per second. We use a web camera connected
to Ubuntu20.04 to capture the human pose images and generate ground truth
human skeleton keypoints. XDP(express data path)[18]is used to redirect the
ICMP packets to Linux user space and record the timestamp of packets. PTP is
used to synchronize the system time among laptops, the average synchronization
error is less than 1ms.

4.2 Dataset

In our experiments, We collect 345000 samples of 3D skeleton frames and 1725000
WiFi CSI packets correspondingly in 2 different environments. To evaluate the
system performance, subjects are asked to walk around without any specific
instruction.

4.3 Evaluation Results

Qualitative results. Table 1 shows the average positioning error for each joint
point, and also calculates the average error for all joint points. From the table,
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Fig. 3. Testbeds and the basic scenario of WiFi based pose estimation

it can be seen that the overall positioning error of the proposed method in
this article is approximately 5.1cm, while the overall positioning error of the
baseline method RFPose is 9.3cm. Moreover, for some specific joint points, like
RH (Right Hand), RA (Right Ankle), RK (Right Knee), LK (Left Knee), LA
(Left Ankle), LH (Left Hand) have relatively larger localization error values,
while joint points located in the middle of the body, such as H (Head), N (Neck),
RS (Right Shoulder), LS (Left Shoulder), have relatively less localization error
values. According to a simple analysis, the reason for this situation is that the
middle part of the human body is located in the center of the Fresnel region
formed by the WiFi signal transmitter and receiver [1,4]. In our experimental
environment, the Fresnel region formed is an ellipsoid with a long half axis of
about 5m and a short half axis of about 0.4m. The middle part of the human
body is located on the direct path with the strongest signal power and the least
interference, while the leg and foot joints are located at relative edge positions.
Due to multipath effects, the limb morphology of the leg and foot joint positions
is relatively complex, making the propagation path of WiFi signals in this part
more complex. In order to showcase the generalization performance of our models
across various WiFi protocols, we present the prediction results obtained from
two commonly used WiFi signals in the table2. The results indicate that the
IEEES802.11ax WiFi signal, characterized by an increased number of subcarriers
and finer signal granularity, exhibits comparatively higher performance.

Table 1. The average keypoint location error of 14 joints (unit:cm)

Joints | H| N| RS| RE| RW| LS| LE| LW| RH| RK| RA| LH| LK| LA| Overall
RFPose|6.6/6.4/8.4|10.1/11.4|8.9|/9.9|11.11 8.2 | 6.4 | 8.9]10.9/9.9 |12.3| 9.3
Ours |4.2(4.1|/3.8|5.7| 4.3 |4.1|6.4|54|21|6.2|76|3.7(6.3|8.0]| 5.1

Quantitative results. Figure 4 shows the quantitative results. The first
line in the figure shows the raw image data collected by the RGB camera. The
second row displays the corresponding GT data predicted by the monocular
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Table 2. The average keypoint location error under the IEEE802.11n and
IEEE802.11ax protocol (unit:cm)

Joints H| N| RS| RE| RW| LS| LE| LW| RH| RK| RA| LH| LK| LA| Overall
IEEES802.11n+RFPose |7.6|7.0{ 8.1 {10.0{11.1|9.1{9.2]10.9| 8.4 | 6.6 | 9.2 [10.3] 9.9 |11.8| 9.9
IEEE802.11ax+RFPose|6.6(7.4| 7.8 | 9.5 |10.6|9.8|9.0 [11.5| 8.9 | 5.9 | 8.9 |10.0{10.2{11.3] 9.1

IEEE802.11n+Ours |4.9/4.5|/4.8|5.6| 3.9 |4.7|/59|5.8|3.1|5.8(6.0{43(6.1|7.0| 5.6
IEEE802.11ax+Ours [3.9(3.9/4.1]5.2 | 3.8 |4.7/6.0{5.12.3|6.0(6.3[3.9(65|73| 4.9

pose estimation model, and the third row displays the attitude prediction results
obtained by the model proposed in this article based on CSI. At the pictures, it
can be seen that the model performs well under different human posture.

|\
!
\\ \
/

Fig. 4. Qualitative results of our proposed method. The first row shows the RGB image
captured by the web camera, the second row shows the prediction Ground Truth using
the pre-trained model, and the third row shows the our model’s prediction based on

WiFi signals.

RGB Images

Ground Truth

CSI Prediction

Runtime Analysis. Compared to 2D and 3D image data, 1D WiFi data
has a smaller data scale. We provide a comparison of runtime between WiFi
based pose estimation models and 2D image based pose estimation models. Our
model take less convolution operations which brings less runtime cost.
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Table 3. Runtime of inference stage of 1 second WiF1i data on a single NVIDIA Titan
XP GPU (unit:s)

Model |Pose Encoder|Pose Decoder|Overall
RFPose - - 1.63
ours 0.13 0.92 1.05

5 Conclusion

In this paper, we designed a system for 3D human pose estimation based on
WiFi signals, which uses commercial WiFi devices to construct fine-grained hu-
man pose images. A new representation of wireless data was proposed, and
different training methods were used to train our WiFi-based human pose es-
timation model. Our approach allows us to exploit a denser representation of
WiFi signal as a ground truth for the WiFi-based 3D Human Pose Estimation
task. Our method consists of two stages. One is to train an Pose Encoder based
on compressed pose representation, which is mainly used to encode WiF1i data to
an intermediate representation for Pose Decoder. Another is to decode the com-
pressed WiFi information to human joints at inference stage. The experimental
results show that the human pose images constructed by our system strictly
match real image data, and have lower computational resource consumption
compared to 2D and 3D convolution operations on images, which proves the
effectiveness our method.
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