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Abstract. Deep neural networks suffer from catastrophic forgetting when
continually learning new tasks. Although simply replaying all previous
data alleviates the problem, it requires large memory and even worse,
often infeasible in real-world applications where access to past data is
limited. Therefore, We propose a two-stage framework that dynamically
reproduces data features of previous tasks to reduce catastrophic forget-
ting. Specifically, at each task step, we use a new memory module to
learn the data distribution of the new task and reproduce pseudo-data
from previous memory modules to learn together. This enables us to in-
tegrate new visual concepts with retaining learned knowledge to achieve
a better stability-malleability balance. We introduce an N-step model
fusion strategy to accelerate the memorization process of the memory
module and a screening strategy to control the quantity and quality of
generated data, reducing distribution differences. We experimented on
CIFAR-100, MNIST, and SVHN datasets to demonstrate the effective-
ness of our method.
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1 Introduction

While the majority of deep learning literature mainly focuses on learning models
using fixed datasets, real-world data is constantly evolving and generating new
classes or domains. This often results in the catastrophic forgetting problem
when models are fine-tuned directly with new data, and previous data is not
accessible due to concerns such as privacy or device storage limitations. Catas-
trophic forgetting can result in a loss of previous data distributions and seriously
degrade the performance of models to process previous data classes. Continual
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learning aims to keep the model learning new tasks without forgetting the knowl-
edge of the old ones, solving the stability-plasticity dilemma [1], which refers to
the challenge of achieving a balance between model stability and plasticity in
continual learning. In detail, excessive plasticity can lead to a dramatic decline
in the model’s performance for old tasks, while excessive stability can increase
the difficulty for the model to learn new tasks.

There has been a significant effort to tackle catastrophic forgetting in the
field of machine learning. Typical methods [7,8], such as knowledge distillation
or fixing important parameters in the model, aim to retain previous knowledge
by reusing well-trained network components. However, when a large number of
new tasks are added to the model, these methods can have limitations. Other
approaches [7,9] attempt to store samples from old tasks to inform new ones,
but the imbalance between the number of samples and new tasks can lead to a
classifier that is biased towards old tasks due to storage capacity limitations. To
address this, some methods [2,3] dynamically expand the classification network
to accommodate new tasks. However, as the number of tasks increases, the clas-
sification network can become increasingly large in parameters and complex in
structure, which requires careful pruning as post-processing.

To address the above weaknesses, we propose a two-stage learning framework
that decouples the process of remembering old classes and the learning process
of new classes to achieve a better stability-malleability trade-off in continuous
learning. We nicknamed our framework, DMCL, for Dynamic Memory-based
Continual Learning with generating and screening. Within this framework, we
design the memory module consisting of a diffusion model [4] and a screening
network in pairs that can learn old classes of data distributions and generate
pseudo-data with the same distribution. Our main idea is to dynamically gen-
erate old class samples by memory module and to learn them together with the
new samples, thus allowing both adequate retention of existing knowledge and
sufficient flexibility to learn new knowledge. In addition, our framework can be
broken down into multiple discrete modules stored on the hard disk and loaded
into different memory modules in turn during use. Therefore, the machine mem-
ory consumed is very limited, even when there are many tasks.

To achieve this, we propose the N-step model fusion strategy and the screen-
ing strategy for the memory module. Specifically, when memorizing the old class
data, our N-step model fusion strategy fuses Gaussian transfer kernels from
different time steps of the diffusion model in the memory module to speed up
convergence. When generating the old class data samples, our screening strategy
controls the quantity and quality of generated samples, avoiding class imbalances
and reducing distribution differences with actual data.

We validated DMCL on image classification tasks with three commonly used
benchmark tests, including the CIFAR-100 [16], MNIST [17], and SVHN [18]
datasets. The empirical results and ablation studies show that our method out-
performs the existing state-of-the-art methods. In fact, DMCL can be applied to
many tasks, not only image classification tasks, as long as the memory module
can reliably reproduce the old data distribution.
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2 Related Work

2.1 Continual learning

Continual learning is to address the catastrophic forgetting of machine learning
on old classes, and common settings include Task-IL, Domain-IL, and Class-
IL. In computer vision, most of strategies applied on large-scale datasets use
rehearsal learning: a limited amount of the data of old task is kept during train-
ing [1]. These data can be either raw pixels or compressed vectors. Others [9,7,11]
acquire knowledge of old classes by knowledge distillation and apply some con-
straints in training new data. These constraints [8] can be directly applied to the
model weights, sample intermediate features, and prediction probabilities of the
classifier. In addition, there are approaches [5,14] that generate instead of storing
old samples through generative models (e.g.,GAN) to alleviate the difficulties of
limited storage space for old samples.

2.2 Diffusion model

The diffusion model is a generative model surpassing GAN as the current state-
of-the-art proposal in the field of image generation [12]. The model consists of two
processes. The first process gradually adds noise to perturb or destroy the data
distribution by the forward process, and then the reverse process learns to remove
the noise and restore the structure of the original data distribution, resulting in
a highly flexible and easily handled generative model. Recently diffusion models
have been applied to many works [4] (e.g., image super-resolution, image trans-
lation, image segmentation, text-to-image generation, etc.) and showed great
potential.

3 Our Approach

In this section, we demonstrate the processing flow of our framework for image
classification tasks and the details of the n-step model fusion strategy and the
screening strategy.

3.1 Method Overview

We expect DMCL to be capable of classifying an increasing number of classes.
We define the image classification tasks to be solved as a sequence of N tasks,
represented as Task = (task1, task2, ..., taskn). Each task includes different cat-
egories of pictures (xi, yi) with completely different distributions D. The classifi-
cation labels y may be the same ( for domain incremental learning) or completely
different ( for class incremental learning). DMCL will learn the taskn data se-
quentially while retaining the knowledge of previously learned task1,2,...,n−1. The
main challenge is that DMCL can only temporarily access the data from the cur-
rent taski, but it must be able to efficiently classify test data from all previous
classes C(task1, ..., taski).
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Fig. 1. The process of sequential training of DMCL. In the top subplot, when a new
taskn arrives, DMCL first learns the data distribution features of taskn with a memory
model, and then replays the old sample data(x1...n−1, y1...n−1) from the previous mem-
ory modules to retrain the classification module together with the taskn data(xn, yn).
The left subplot is the current taskn data for the training process of diffusion model
and screening network in the memory module, and the N-step model fusion strategy
is applied to training diffusion model. The right subplot is a retraining process of the
classification module. All memory modules generate samples, select and label pseudo
data (x1...n−1, y1...n−1) by screening strategy. Then, the pseudo data(x1...n−1, y1...n−1)
and taskn data (xn, yn) work together to retrain the classification module.

To address the forgetfulness of previous tasks, our DMCL learns the sample
data for each task by the memory module and re-trains the pseudo-sample data
jointly in the new task. The sequence training process of DMCL is at the top of
Figure 1. When the taskn arrives, the DMCL first trains the memory module
with the current task sample data, and then trains the classification module with
the current task sample data and replayed sample data from all the previous
memory modules. Formally, the loss function of the i-th classification model is
given as

Ltrain(θi) = riE(x,y)∼Ci
[L(C(xi, θi), y]+

i−1∑
t=0

rtEx′∼Mt
[L(C(x′, θi), SNt(x

′)] (1)
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where θi are network parameters of the i-th classification module, Mt is the t-th
memory module, SNt is the t-th screening network in the t-th memory module,
and rt is a ratio of mixing data.

3.2 Classification Module

The classification module used in our study is compatible with any classification
network, and we chose the Resnet [15] network for our experiments in this pa-
per. When a new task is presented, we first update the number of classification
heads in the last layer of the classification network to match the total number
of classes, given by C(task1, ..., taskn−1). Next, we combine the pictures and
labels generated by the memory module, i.e.,x(Memory1, ...,Memoryn−1) and
y(Memory1, ...,Memoryn−1), with the samples of the current taskn, in a certain
ration depending on the task’s importance. As shown in the training classification
module of Fig. 1, the diffusion models in the memory module generate samples,
and then the screening network then selects and labels the categories through
the screening strategy with output pseudo-data (x1...n−1, y1...n−1). Finally, the
pseudo-data and current task data work together to retain the classification
module.

3.3 Memory Module

The memory module is the core part of DMCL and consists of two parts: the
diffusion model and the screening network. The diffusion model in our work uses
the denoising diffusion probabilistic model [12] (DDPM), which can generate
samples with the same distribution as the original data in a limited time by
variational inference. The forward chain of DDPM perturbs the data distribution
by gradually adding Gaussian noise with a pre-designed schedule until the data
distribution converges to a Gaussian distribution. The reverse chain of DDPM
starts with the given prior and uses a parameterized Gaussian transition kernel,
learning to gradually restore the undisturbed data structure. The noise-adding
process q for the forward chain and the noise-removal process p for the reverse
chain are defined formally as:

q(xt|xt−1) = N(xt;
√
1− βtxt−1, βtI) (2)

pθ(xt − 1|xt) = N(xt−1;µθ(xt, t),
∑

θ(xt, t) (3)

where the xt is the sampling noise to image at times step t, and the βt is a fixed-
variance strategy. The q(xt|x0) is the process of forward chain, deriving the noise
distribution of xt from xt−1, and I is the constant value. The pθ(xt − 1|xt) is
the process of reverse chain, removing the noise distribution from xt to xt− 1,
and the µθ(xt, t) is a noise reduction network for predicting the noise at t step.

The screening network in the memory module is a small classification net-
work. Compared with the classification module, the screening network is trained
with only one task data, so it has better performance than the classification
module in a single task. Like the classification module, the screening network is
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compatible with any classification network. The role of the screening network is
to remove samples with poor generation quality and match the corresponding
pseudo-labels.

On the left of Fig. 1, the training process of the memory module is shown. The
diffusion model and the screening network in the memory module are trained
simultaneously and independently. The image x and category label y from the
current task are used to train the screening network. And for the training of
the diffusion model only use the image x of the current task. When training the
diffusion model, use the N-step model fusion strategy to speed up its convergence.

The generation and screening processes of the memory module are shown on
the right side of Fig. 1. The diffusion model in different memory modules gen-
erates various classes of pseudo-sample data. And the corresponding screening
network in the memory module selects and marks the generated samples by the
screening strategy. In this way, The resulting image x1,...,n−1 is closer to the data
distribution of the original task and reduces the ambiguity between the different
categories y1,...,n−1.

3.4 Screening Strategy

The screening strategy is acting when generating samples. Firstly, set a reason-
able confidence threshold. After that, the Screening network is used to classify
the generated samples and give the confidence level. Samples below the confi-
dence threshold are directly dropped, and the remainders go to the joint training
of the next task. Each memory module selects the same number of samples by
screening strategy as the number of the new task to decrease the category im-
balance problem.

The confidence threshold is finalized by repeated pre-experiments. Using dif-
ferent confidence threshold values, samples are generated by the same memory
module and selected using the same screening strategy for training of the classifi-
cation module. The appropriate confidence threshold value is selected according
to the variation in the accuracy of the classification module. The confidence
threshold in this paper is 0.98.

Algorithm 1 describes the entire flow of the screening strategy. In the follow-
up ablation experiments, we found that the strategy was helpful to improve
the classification accuracy, especially when the diffusion model was not fully
converged.

3.5 N-step Model Fusion Strategy

The N-step model fusion strategy is applied to the diffusion model training. The
core of the diffusion model is the training of a noise-reducing U-Net [12], using
a Monte Carlo algorithm. At each training, a time step t is randomly selected
from the total time step T . Then the loss is calculated by forward propagation
and gradient descent for the U-Net in time step t, with updated parameters of
the diffusion model (DMt). Based on the Law of Large Numbers theorem,
the U-Net will eventually converge after many iterations.
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Algorithm 1 The screening strategy, Pytorch-like
#Input:DM(diffusion model),SN( screening network),
#N(number of generation samples),threshold
#Output:X(image generated),Y(label of image)
X = list() #store images
Y = list() #store labels
while len(X)<N:

sample = DM() #generate sample
#calculate the label and degree of confidence
Label, CF = SN(sample)
if CF >=threshold:

X.append(sample) #screening
Y.append(Label)

return X,Y

Assuming that each gradient descent decreases the loss, the KL scatter be-
tween the samples generated by DMt and the samples from the original task is
KL(D|DMt). By Jensen’s inequality, it is known that:

E(KL(D||DMt)) ≥ KL(D||E(DMt)) (4)

where E is the expectation. If E(DMt) is used instead of DMt for the next
iteration, a lower KL scatter is obtained. However, the performance of the over-
head of computing E(DMt) is high in practice. As indicated by Algorithm 2,
we calculate the mean value of the n-step model fusion in terms to approximate
E(DMt) as follows

E(DMt) ≈
1

n

n∑
i=1

DM i
t (5)

Algorithm 2 N-step model fusion strategy, Pytorch-like
#Input:CM(the updated model),now(number of iterations)
#Output:model(model for the next training)
old_models #temporary strorage models
previous_model #the model before gradient descent
old_models.append(copy(CM)) #save updated model
#check whether the number of steps has reached N
if check_step(now):

previous_model=mean(old_models)
return previous_model
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4 Experiments

4.1 Experiment Setup and Implementation Details

Datasets We experimented with class incremental experiments on the CIFAR-
100 [16] dataset, and domain incremental experiments on the MNIST [17] and
SVHN [18] datasets. Due to the fact that the MNIST dataset is a 28*28 grayscale
image, we transform it into a 32*32 pixel and 3-channel image (keeping with
SVHN).

Benchmarks In CIFAR-100, we compare performances on 10 steps (10 new
classes per step), 20 steps (5 new classes per step), and 50 steps (2 new classes
per step) and report the top-1 accuracy(%) for each step. In both MNIST and
SVHN, we conducted domain increment experiments from MNIST to SVHN and
from SVHN to MNIST, and report the change in top-1 accuracy(%).

The performance of the classification module directly affects the accuracy of
class incremental experiments and domain incremental experiments. Our exper-
imental framework is based on the open-source PYCIL [6] secondary develop-
ment. We experimented the classification experiments with various specifications
of Resnet [15] at CIFAR-100 dataset, and the performance is shown(accuracy
of the Resnet18 is 70.55%, Resnet32 is 72.34%, Resnet34 is 74.12%, Resnet50
is 74.56% and Resnet101 is 74.28%). To facilitate comparison with DyTox [2]
(Transf. Joint accuracy 76.12%), we chose Resnet34 (Joint accuracy 74.12%) as
the benchmark network for the classification module.

We perform repeated pre-experiments on task data of CIFAR-100 to deter-
mine the confidence threshold of the screening strategy. As the results are shown
in Table 1, We find with a rising threshold, the accuracy rate will start to rise,
but will remain the same after reaching a certain value. The experiment was
chosen with a threshold value of 0.98.

Table 1. The accuracy of different confidence thresholds on test data.

threshold 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
accuracy 0.801 0.826 0.833 0.847 0.852 0.861 0.872 0.878 0.883 0.882

4.2 Class Incremental Learning

Table 2 shows the results for all approaches on CIFAR-100. The more steps there
are, the larger the forgetting is and thus the lower the performances are. These
settings are shown in Fig. 2. In the setting, DMCL is close to DER [3] for much
fewer parameters(up to 25x less). Critically, DMCL is significantly above other
baselines and has better-forgetting resistance for the case of a consistently huge
number of tasks: e.g. DMCL is up to +30% in “Last” accuracy in the 20 steps
setup.
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Table 2. Results on CIFAR-100 averaged over three different class orders. Baseline
results come from [2]. The * symbol means that [3] needed setting-sensitive hyperpa-
rameters and its reported parameters count was an average over all steps.

10 steps 20 steps 50 steps
Methods #P Avg Last #P Avg Last #P Avg Last
Res. Joint 22.45 - 74.12 22.45 - 74.12 22.45 - 74.12
iCaRL[7] 11.22 65.27 50.74 11.22 61.2 43.75 11.22 56.08 35.62
UCIR[8] 11.22 58.66 43.39 11.22 58.17 40.63 11.22 56.86 37.09
BiC[9] 11.22 68.8 53.54 11.22 66.48 47.02 11.22 62.09 41.04
WA[10] 11.22 69.46 53.78 11.22 67.33 47.31 11.22 64.32 42.14

PODNet[11] 11.22 58.03 41.05 11.22 53.97 35.02 11.22 51.19 35.99
RPSNet[13] 56.5 68.6 57.05 - - - - - -

DER*[3] 112.27 74.64 64.35 224.55 73.98 62.55 561.39 72.05 59.76
DyTox[2] 10.73 73.66 60.67 10.74 72.27 56.32 10.77 70.2 52.34
DMCL 22.45 71.97 64.94 22.45 72.69 65.08 22.45 71.03 60.01

Fig. 2. Performance evolution on CIFAR100. The top-1 accuracy (%) is reported after
learning each task. Left is evaluated with 10 steps, middle with 20 steps, and right with
50 steps.

4.3 Domain Incremental Learning

Table 3 shows the results for DMCL and Joint training on MNIST and SVHN.
Whether the domain is changed from MNIST to SVHN or vice versa, DMCL
achieves the same level of performance as joint training, with 97% average ac-
curacy.

Table 3. The top-1 accuracy results of domain increment experiments on MNIST and
SVHN.

MNIST SVHN MNIST to SVHN SVHN to MNIST
DMCL 99.6 96.56 97.24 96.65
Joint - - 96.97
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Fig. 3. Performance evaluation of the ablation experiment of screening strategy at
CIFAR-100 with 10 steps.

Fig. 4. Performance evaluation of the ablation experiment of the N-step model fusion
strategy at CIFAR-100 with the same task. where max or min denotes the maximum
or minimum number of fusion steps, and EMA denotes the original exponential moving
average of the diffusion model.
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4.4 Ablation Experiments

Screening strategy We experimented on CIFAR-100 with a setting of 10 steps.
Using the same diffusion model and screening network, the threshold value of the
screening strategy is set to 0.98. In Fig. 3, the screening strategy can effectively
reduce the difference in the distribution between the generated samples and the
original task. In each task, the screening strategy contributed to the quality of
sample replication, with a maximum improvement of 9.6% on top1 accuracy and
6.3% on top5 accuracy.

N-step model fusion strategy We conducted experiments on CIFAR100,
with the same network structure of diffusion model, the same screening strat-
egy, and the same task data, to compare the memory effect with different fusion
steps. Fig. 4 displays the performance comparison of different fusion step strate-
gies, and the baseline strategy is the exponential moving average (EMA) of the
diffusion model. We compared the 10 steps fusion and linear adjustment step
fusion methods. The linear function is as follows:

#1 : N =

⌊
10 +

steps

1000

⌋
#2 : N =

⌊
100− steps

1000

⌋
#3 : N =

⌊
10 +

steps

2000

⌋
From Fig. 4, it can be seen that the N-step model fusion strategy has a notice-
able performance improvement over the EMA strategy(up to +4.6% in top 1
accuracy).

5 Conclusion

In this paper, we proposed a two-stage framework for reducing catastrophic
forgetting in deep neural networks when learning new tasks. At each step, we
use a new memory module to memorize the data features of the new task and
dynamically generate the pseudo-data of the previous tasks from the previous
memory modules. We introduced the N-step model fusion strategy to accelerate
the memorization process of the memory module and the screening strategy to
select the generated samples and control the quantity and quality of the gen-
erated data. Experimental results on CIFAR-100, MNIST, and SVHN datasets
show that our method outperforms the state-of-the-art methods in terms of
accuracy, which achieves a better stability-malleability balance. Our proposed
method provides a practical solution to address catastrophic forgetting in con-
tinual Learning, and our approach is easily modularly extended and optimized
to suit different demands.
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