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Abstract. With the continuous development of deep learning, single-
image super-resolution (SISR) based on convolutional neural networks
(CNNs) has made significant progress. Although CNN-based methods
have achieved great success, these methods are difficult to apply to edge
devices due to the need for large amounts of computing resources. To ad-
dress this problem, the latest advancements in efficient SISR techniques
focus on reducing the number of parameters and multiply-add opera-
tions (MAdds). In this paper, we propose a novel Conditional Convolu-
tion Residual Network (CCRN) to tackle this challenge. The main idea
is to use conditional convolution instead of ordinary convolutional lay-
ers for residual feature learning and to combine Contrast-aware Channel
Attention (CCA) and Enhanced Spatial Attention (ESA) mechanisms
to improve the model’s performance. The model’s performance is en-
sured while reducing the computational complexity. Experimental results
demonstrate that CCRN has fewer MAdds than existing SISR methods
while achieving state-of-the-art performance.

Keywords: Efficient super-resolution · Conditional convolution · Atten-
tion mechanism

1 Introduction

Single Image Super-Resolution (SR) is a fundamental task in the field of com-
puter vision, which aims to reconstruct high-resolution (HR) images from low-
resolution (LR) images for better visual effects. With the development of deep
learning, convolutional neural network-based methods have been widely intro-
duced to the SR field to achieve high-quality super-resolution images.To improve
the restoration quality of SR networks, existing SR networks typically employ
large-scale models, which result in high computational complexity and make
it challenging to apply them in real-world scenarios that require efficiency or
real-time implementation, especially on edge devices.
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To design lightweight neural networks, researchers have approached the prob-
lem from the perspectives of parameters and computational complexity and
adopted different optimization strategies. For example, FSRCNN[1] reduces com-
putation and parameter numbers by using upscaling modules and adhering to
reducing the size of convolutions and features. Recursive learning has also been
widely applied in many works, such as DRCN[2] and DRRN[3], to further re-
duce the number of parameters. However, due to their limited representation
capabilities, these recursive methods also lead to performance degradation while
consuming more computational resources. For instance, DRCN uses 17.9 trillion
multiply-add operations (MAdds), while DRRN uses 6.8 trillion, which is difficult
to afford for mobile devices. Therefore, to improve efficiency, some researchers
have adopted different approaches, such as parameter sharing strategies[4], cas-
caded networks with grouped convolutions[5], information or feature distillation
mechanisms[6], and attention mechanisms[7]. Although these methods employ
compact architectures and improve mapping efficiency, there is still redundancy
in convolution operations. Hence, researchers have shifted the focus from effi-
cient SR to designing effective modules and dedicated networks to enhance the
performance of SR networks further.

In this paper, we propose a novel lightweight super-resolution (SR) network,
called Conditional Convolution Residual Network (CCRN). The network signif-
icantly reduces the MAdds of the network by optimizing convolution operations
and introducing effective attention modules while achieving state-of-the-art per-
formance.

Firstly, CCRN constructs the basic modules using Conditional Convolution[8].
This approach addresses the challenge of increasing model capacity by adding
parameters, depth, and channels, which would otherwise result in greater compu-
tational demands and deployment difficulty. By inputting the convolution kernel
parameters, Conditional Convolution breaks the static convolution characteris-
tics, thereby improving the model’s performance more efficiently. Secondly, to
ensure the quality of reconstructed images, we introduce attention mechanisms
in the process of feature extraction to select important pixel points at a fine-
grained level, and better utilize pixel-level information in the image. Specifically,
we add Enhanced Spatial Attention (ESA)[9] and Contrast-Aware Channel At-
tention (CCA)[6] modules at the end of each residual block to achieve this goal.
Our proposed CCRN method significantly reduces the model’s MAdds while
maintaining SR performance in efficiency-oriented SR networks.

Overall, our main contributions can be summarized as follows:

– We introduce conditional convolution to construct basic modules and demon-
strate their effectiveness in SR.

– We learn the importance of channels and space with two effective attention
modules, ESA and CCA, respectively, and enhance the model’s ability.

– The proposed CCRN, which integrates conditional convolution and effective
attention modules, significantly reduces the network’s computational com-
plexity while maintaining SR performance.
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2 Related Work

2.1 Deep Networks for SR

In recent years with the rapid development of deep learning techniques, con-
volutional neural networks (CNNs) have greatly advanced the development of
low-level computer vision tasks[10]. Super-resolution (SR) tasks have also made
increasingly significant progress. Since the pioneering work of Dong et al.[11],
who proposed the SRCNN with a three-layer convolutional neural network that
significantly outperformed traditional methods, a series of methods have been
proposed to improve SR models. For example, Kim et al. proved [12] that deeper
networks can achieve better performance by increasing the network depth to 20.
Zhang et al.[13] introduced dense connections into the network, further enhanc-
ing the model’s representation ability. Liang et al.[14] proposed a Transformer
architecture for image restoration based on Swin Transformer[15], which achieved
significant improvement and surpassed the state-of-the-art performance. [16] in-
troduced a channel attention mechanism to utilize global statistics information
for better performance.

Most of the above methods improve the quality by using more convolutional
layers and attention mechanisms, ignoring resource-limited applications, which
limits the practical application of these methods.

2.2 Efficient SR Models

Although the aforementioned methods have made significant progress in perfor-
mance, most of them come with high computational costs, which has prompted
researchers to develop more efficient methods for SR tasks. There have been
many works aimed at designing more effective models for SR. Ahn et al.[5] pro-
posed CARN-M, which is a residual network with a cascading mechanism that
can reduce parameters and computations at the expense of lowered quality. Hui
et al. proposed an information distillation network[17] that explicitly splits in-
termediate features for distilling and compressing local long-short path features.
Based on IDN[17], IMDN[18]was introduced with a more reasonable feature dis-
tillation mechanism and effectively adaptive pruning strategy. By re-examining
these distillation mechanisms, Liu et al.[19] proposed a novel channel-splitting
strategy that utilizes convolutional layers for dimensionality change. Addition-
ally, they designed shallow residual blocks to improve inference performance
while maintaining parameter size.

3 Method

3.1 Network Architecture

The overall architecture of our proposed CCRN method is shown in Figure. 1.
It inherits the architectures of IMDN and consists of four stages: shallow feature
extraction, deep feature extraction, feature fusion, and upsampling module. The
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Fig. 1. CCRN Network Architecture

shallow feature extraction stage involves extracting coarse features from the LR
image using a 3x3 convolution operation, which can also be used to supplement
the residual information lost in the feature extraction process with subsequent
blocks. Given an input image ILR, this feature extraction process can be formu-
lated as:

F0 = L(ILR) (1)
where L represents the feature extraction function of the 3x3 convolution, and
F0 is the extracted feature map. Next, we use a cascaded approach with multiple
CCRBs for deep feature extraction, which can be formulated as:

Fn = Hn
CCRB(Hfuse(Fn−1, Fn−2)) (2)

where Hn
CCRB(·) represents the n-th CCRB block, and Fn is the n-th output

feature map. Hfuse(·) represents the fusion module, and to utilize residuals for
learning, the input and output of the n-1 CCRB block are aggregated. In the
feature fusion stage, the multi-distilled deep features Fn and the shallow features
F0 are fused together through residual connections.

Ffuse = Hfuse(F0, Fn) (3)

The reconstruction stage can be formulated as follows:

Frec = Hrec(Ffuse) (4)

where Hrec(·) consists of a 3x3 convolution layer and a pixelshuffle operation. The
model is optimized using the L1 and L2 functions, and the specific optimization
process is described in the experiments.

3.2 Conditional Convolution Residual Block

Inspired by the IMDB in IMDN, we designed a more efficient conditionally-
convolutional residual block (CCRB) with a structure similar to IMDB. The
overall architecture of CCRB is shown in Figure. 2(a).

A CCRB generally consists of three stages: feature distillation, feature con-
densation, and feature enhancement. In the first stage, for the input feature Fin,
feature distillation can be formulated as:

Fdistilled1, Fcoarse1 = DL1(Fin), RL1(Fin),

Fdistilled2, Fcoarse2 = DL2(Fcoarse1), RL2(Fcoarse1),

Fdistilled3, Fcoarse3 = DL3(Fcoarse2), RL3(Fcoarse2),

Fdistilled4 = DL4(Fcoarse3) (5)
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Fig. 2. The architecture of CCRB and CondConv

where DL represents the distillation layer that generates distilled features,
and RL represents the refinement layer that further refines coarse features. In the
feature condensation stage, the distilled features Fdistilled1,Fdistilled2,Fdistilled3

and Fdistilled4 are concatenated together and then compressed into a feature map
with reduced dimensions using a 1x1 convolution.

Fcondensed = Hlinear(Concat((Fdistilled1, · · · , Fdistilled4)) (6)

where Fcondensed is the compressed feature map, and Hlinear(·) represents a 1x1
convolution layer. For the final stage, in order to enhance the model’s represen-
tation ability while maintaining efficiency, we introduce a lightweight enhanced
spatial attention (ESA) block[9] and a contrast-aware channel attention (CCA)
block[6] as part of the CCRB.

Fenhanced = HESA(HCCA(Fcondensed)) (7)

where Fenhanced is the enhanced feature map, HESA(·) and HCCA(·) respectively
represent the ESA and CCA modules, which have been shown to effectively
enhance model ability from both spatial and channel perspectives.

3.3 Conditional Convolution

As shown in Figure. 2(b), in CondConv[8] each convolution kernel has the same
dimension as the standard convolution kernel parameters. The ability improve-
ment of conventional convolutional layers relies on increasing the kernel size and
the number of channels, which further increases the overall computation of the
network. However, the CondConv kernel is customized for each input sample,
then the obtained kernel is used to perform convolution on that sample to ob-
tain the corresponding output. Specifically, the convolution kernel in CondConv
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is parameterized by:

Output(x) = σ((α1 ·W1 + · · ·+ αn ·Wn) ∗ x) (8)

Each α is an example-dependent scalar weight computed using a routing
function with learning parameters, n is the number of experts, and σ is the
activation function. When we adjust the convolution layer to use CondConv,
Wi is the same kernel in convolution as in normal convolution. The following
routing function is used to compute α. This function is computationally efficient,
distinguishes the input examples in a meaningful way, and is easy to interpret.
We compute example-dependent routing weights α from layer inputs in three
steps: global average pooling, fully connected layers, and sigmoid activation.

α = Sigmoid(GlobalAveragePool(x) ∗R) (9)

where R is the learning routing weight matrix that maps the pooled input to n
expert weights. Normal convolutional operations operate only on local sensory
fields, and the routing function described above allows to use of information from
the global context in local operations.

In the previous efficient SR models, the capacity of the regular convolutional
layers is generally increased by increasing the kernel height/width of the kernel
or the number of input/output channels, but each additional parameter in the
convolution requires additional multiplication proportional to the number of
pixels in the input feature map, which can be large. This also increases the
overall computational effort.

In CCRB we introduce the CondConv layer, where we compute a convolution
kernel for each example as a linear combination of n experts before applying the
convolution. It is crucial that each convolution kernel is computed only once,
but is applied to many different positions in the input image. This means that
by increasing n, we can increase the capacity of the network with only a small
increase in inference cost; each additional parameter requires only 1 additional
multiplication and addition. This greatly reduces the computational cost of in-
creasing the capacity of the network and plays a big role in reducing the MAdds
in Efficient SR.

3.4 ESA and CCA

We introduce both the enhanced spatial attention(ESA) module and the contrast-
aware channel attention(CCA) module to pay more attention to the features
related to the fine details of the image. The ESA mechanism operates at the end
of each residual block to enforce features to focus more on the regions of interest.
By aggregating these salient features together, we can obtain more representa-
tive features. The ESA mechanism as shown in Figure. 3(a) starts with a 1x1
convolutional layer to reduce the channel dimension, making the entire block
very lightweight. To further expand the receptive field, we use a stride convolu-
tion (with a stride of 2), followed by a max pooling layer. An upsampling layer is
employed to restore the spatial dimension, and a 1x1 convolutional layer is used
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Fig. 3. The architecture of ESA and CCA

to recover the channel dimension. Finally, an attention mask is generated by a
sigmoid layer. To utilize residual information, a skip connection is also employed
to directly forward the high-resolution features before spatial downsampling to
the end of each block.

In deep neural networks, different channels in different feature maps often
represent different objects. Channel attention serves as an object selection pro-
cess that can adaptively re-calibrate the weights of each channel to determine
what to focus on. CCA as shown in Figure. 3(b) utilizes contrastive information,
including the sum of mean and standard deviation, to calculate the weights for
channel attention.

4 Experiment

4.1 Datasets and Metrics.

The training images consisted of 5000 images from LSDIR [20] and 800 im-
ages from DIV2K [21]. We employed four standard benchmark datasets, namely,
Set5[22], Set14[23], B100[24], Urban100[25] to evaluate the performance of dif-
ferent methods. The average peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) on the Y channel (i.e., luminance) were used
as evaluation metrics.

4.2 Implementation details of CCRN

The proposed CCRN consists of four CCRB blocks with 48 channels and employs
two experts in conditional convolutions. All kernels in the deep convolutions have
a size of 3. The batch size is set to 16, and each LR input patch has a size of
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48×48. The model is optimized using the Adam optimizer with β1 = 0.9 and β2
= 0.999. The initial learning rate is set to 1× 10−4 with drops by half every 200
epochs. We set the total epochs to 2000, first the L1 loss is employed for model
optimization with 1000 epochs, and a total of 1× 106 iterations are performed.
Then L2 loss is used to fine-tune the network with 1000 epochs. We implement
our model using Pytorch on a GeForce RTX 3090 GPU.

Table 1. Results on method complexity (number of parameters, Multi-Adds). The
multi-adds operation is calculated with 320×180 input size.

Method Params[K] Multi-Adds[G]

SRCNN 8 52.7

LapSRN 251 29.9

DRRN 298 6796.9

MemNet 678 2662.4

VDSR 665 612.6

IDN 553 31.1

CARN 1592 90.9

IMDN 715 41.0

CCRN(ours) 752 14.15

4.3 Study of the Basic Module

In our work, each feature extraction part of CCRB consists of three CondConv,
and each CondConv can be set with different numbers of experts. We investigated
the impact of changing the number of experts in CondConv. As shown in Table
2, with an increase in the number of experts, the SR performance improves, and
the model’s parameters increase, but the model’s MAdds remain stable. This
suggests that increasing the number of experts in CondConv can improve the
model’s performance without affecting the model’s computational cost.

Figure. 4(b) demonstrate the outputs of feature maps with different layers.
All feature maps are from the final CCRB module, each row displays 10 feature
maps from the input of the CCA layer, the output of the CCA layer, and the
output of the ESA layer, respectively. Through the attention mechanism, we
can observe that the details of the image have been further explored, which is
beneficial to enhancing the image quality for SR.
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Table 2. Ablation results of various experts in CondConv(PSNR/SSIM)

Expert Number Multi-Adds[G] Params[K] Set5[22]

1 14.15 503 31.55/0.8834

2 14.15 752 31.75/0.8875

3 14.15 1002 31.82/0.8887

Fig. 4. Illustrations of (a)Low-resolution image (b)Super-resolution image (c)Feature
Maps

Table 3. Average PSNR/SSIM for scale ×4 on datasets Set5, Set14, B100, Urban100
with bicubic degradation.(Compared to CARN, which achieves the best PSNR per-
formance, we have obtained comparable results using only one-sixth of the MAdds
(multiply-additions) utilized.)

Method B100[24] Set5[22] Set14[23] Urban100[25]

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic 25.96/0.6675 28.42/0.8104 26.00/0.7027 23.14/0.6577

SRCNN 26.90/0.7101 30.48/0.8626 27.50/0.7513 24.52/0.7221

LapSRN 27.32/0.7275 31.54/0.8852 28.09/0.7700 25.21/0.7562

DRRN 27.38/0.7284 31.68/0.8888 28.21/0.7720 25.44/0.7638

MemNet 27.40/0.7281 31.74/0.8893 28.26/0.7723 25.50/0.7630

VDSR 27.29/0.7251 31.82/0.8903 28.01/0.7674 25.18/0.7524

IDN 27.41/0.7297 32.13/0.8937 28.25/0.7730 25.41/0.7632

CARN 27.58/0.7349 32.21/0.8948 28.60/0.7806 26.07/0.7837

IMDN 27.56/0.7353 32.13/0.8948 28.58/0.7811 26.04/0.7838

CCRN(ours) 27.43/0.7305 31.75/0.8875 28.42/0.7756 25.69/0.7710
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Fig. 5. MAdds and PSNR(based on B100[24] dataset)

4.4 Result and Discussion

The model complexity comparison and performance evaluation of CCRN and
other Efficient SR models, namely,SRCNN[26],LapSRN[27],DRRN[3],MemNet[28],
VDSR[12],IDN[17],CARN[5],IMDN[6] on the testing dataset are presented in Ta-
ble 1 and Table 3 for ×4 scales. The complexity of each model can be found in
the second and third columns of Table 1, where the second column shows the
number of parameters included in the model, and MAdds represents the number
of Multi-Adds in the model, where one Multi-Add represents one multiplication
and addition operation. A lower number of Multi-Adds indicates that the model
requires less computation and thus has faster computational speed. It can be
observed that CCRN has significantly fewer Multi-Adds than all the other mod-
els, which implies a great advantage in computational speed. Table 3 also shows
that CCRN achieves good performance. Compared to IMDN, which suffers from
a 0.13 PSNR loss on B100[24] at x4 scale, CCRN requires only one-third of the
computation. As shown in Figure. 5. CCRN has the lowest number of Multi-Adds
among all SR models while maintaining a high PSNR.

5 Conclusion

In this paper, we propose a lightweight network named Conditional Convolu-
tion Residual Network (CCRN) for single image super-resolution. Inspired by
the Information Multi-distillation Network (IMDN) and Conditional Convolu-
tion (CondConv), the design of CCRN adopts a similar architecture to IMDN
but introduces more efficient Conditional Convolution Residual Blocks (CCRB).
Furthermore, effective ESA blocks and CCA blocks are used to enhance the rep-
resentative ability of the model. Extensive experiments demonstrate that our
method can achieve the same SR performance as advanced and efficient SR
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methods with much fewer MAdds, significantly reducing the computational cost
of the model required for single image SR.
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