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Abstract—Generalizable WiFi gesture recognition has gained
increasing attention for its contactless operation, ubiquitous in-
frastructure and enhanced robustness. Among existing methods,
source-free domain adaptation (SFDA) stands out by preserving
privacy and reducing computational demands without relying
on source data. Current methods typically process low-level
WiFi signals and their high-level semantic representations from
a unified perspective, making temporal semantic learning highly
susceptible to low-level signal noise and lacking consistent se-
mantic guidance for cross domain alignment, thereby limiting
the effectiveness. In this paper, we propose ViFi, a novel SFDA
framework specifically designed for cross-domain WiFi gesture
recognition. Unlike prior work, ViFi introduces a viewpoint-
hierarchical strategy that explicitly process cross-domain sensing
from two perspectives: the perceptual (signal-level) and the
semantic (gesture-level). This separation mitigates the impact of
signal noise on high-level semantics while preventing semantic
space drift during domain alignment. ViFi operates in two key
stages. First, it anchors the perceptual encoder and employs
masked signal semantic reconstruction to learn robust high-level
temporal semantics. Then, it freezes the semantic encoder and
aligns the perceptual encoder across domains, again leveraging
masked reconstruction to ensure alignment under a unified
and meaningful semantic space. We evaluate ViFi on a public
dataset, and experimental results show that our viewpoint-
hierarchical method achieves over 15% improvement compared
to the baseline and significantly outperforms state-of-the-art
approaches.

Index Terms—WiFi sensing, channel state information, source-
free domain adaptation, gesture recognition.

I. INTRODUCTION

Gesture recognition underpins a wide range of human-
computer interaction (HCI) applications [1]. Among various
sensing modalities, WiFi Channel State Information [2] (CSI)-
based gesture recognition [3] has attracted increasing attention
due to its ubiquity, privacy-preserving nature, and contact-
less sensing capabilities. The adoption of machine learning
and deep learning techniques has significantly improved the
performance of WiFi-based gesture recognition systems [4],
[5]. However, these systems often struggle with generalization
across domains, primarily due to distribution shifts caused by
differences in physical environments and sensing perspectives
between training and deployment. To bridge this gap and
advance the practical deployment of WiFi sensing, cross-
domain WiFi gesture recognition [6] has seen notable progress
in recent years.

Current cross-domain WiFi gesture recognition approaches
can be broadly categorized into two types: domain gener-
alization (DG) and domain adaptation (DA) methods. The
core idea behind DG is to leverage existing data to learn
domain-invariant features. Early studies mainly use hand-
crafted design to derive domain-invariant features from WiFi
CSI, based on expert knowledge. For example, Widar 3.0 [7]
utilizes the Body-coordinate Velocity Profile (BVP) to achieve
domain-independent gesture representation. However, such
handcrafted approaches may lead to the loss of critical in-
formation from the original signal. Thus, recent studies have
shifted their focus toward automated generalization feature
learning. These methods typically employ adversarial learn-
ing [8] and complementary information [9] to automatically
refine robust features. Nevertheless, relying solely on domain-
invariant features limits performance by overlooking domain-
specific cues that remain valuable for gesture recognition.

On the other hand, DA methods aim to explicitly reduce
the distribution gap between source and target domains.
Therefore, DA offers a more effective way to leverage all
the available information [10]. These approaches typically as-
sume access to labeled source-domain data and unlabeled (or
partially labeled) target-domain data during training. Through
techniques such as adversarial training, feature alignment,
or self-supervised learning, they align representations across
domains to enhance cross-domain generalization [11]. Due to
privacy concerns and high computational costs, most recent
studies avoid using raw WiFi source data (Source Free) for
DA, relying instead only on pre-trained source models. Some
adopt few-shot strategies with limited labeled target data [5],
[12], while others like Wi-SFDAGR [13] use self-supervised
clustering on unlabeled data. These frameworks jointly learn
low-level perception and high-level semantic features from
CSI during both representation learning and DA. However,
CSI is a highly noisy and environment-sensitive signal. This
joint learning strategy may lead the model to overemphasize
denoising at the perceptual level, rather than effectively captur-
ing meaningful temporal semantics. Furthermore, during the
DA phase, these methods may tend to focus more on finetune
semantic encoder, while neglecting the more fundamental
yet challenging task of unifying perceptual viewpoints across
domains.



To address these limitations, we propose ViFi, a novel
Source-Free Domain Adaptation (SFDA) framework tailored
for WiFi-based cross-domain gesture recognition. Unlike prior
methods, ViFi adopts a viewpoint-hierarchical strategy that
separates WiFi sensing into two levels: a perceptual (signal-
level) and a semantic (gesture-level) perspective. The percep-
tual level captures low-level signal variations, while the se-
mantic level focuses on temporal relations in CSI that underlie
gesture representation. Specifically, in source domain training
stage, ViFi first trains and freezes a perceptual encoder on the
source domain to maintain a stable perceptual viewpoint, then
a semantic encoder is subsequently trained by reconstructing
masked temporal segments of the CSI. During target domain
adaptation, the semantic encoder is fixed, and the same recon-
struction strategy guides the target perceptual encoder to align
with the source, enabling perceptual domain adaptation under
a unified semantic view. Experiments show ViFi achieves
over 15% improvement over the baseline and significantly
outperforms current state-of-the-art (SOTA) methods.

II. PRELIMINARIES
A. Channel State Information

CSI describes the fine-grained channel characteristics dur-
ing the propagation of WiFi signals from the transmitter
(Tx) to the receiver (Rx), and it can be decomposed into
static components H,(f, ) and dynamic components H,(f,t)
as [14], [15]:

H(fat):Hs(f7t)+Hd(fvt) (D

where f, t, Hs(f,t) and Hy(f,t) represent the signal fre-
quency, the timestamp, the CSI from Line-of-Sight (LoS)
and static reflections, and the CSI caused by moving objects,
respectively.

Hy(f,t) can be further represented as [16]:

Ho(f,1) = Y an(f.t)e 275" )
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where P; denotes the collection of dynamic paths, and
an(f,t), e=727“5” and d,,(t) denote the complex attenuation,
phase shift and path length of the n-th path, respectively.
During gesture execution, the movement of hands and arms
alters the propagation path lengths of dynamic components
and make two dominant features changes: amplitude fluc-
tuations |H(f,t)| from multipath interference patterns, and
phase modulation =727~

) . . .
S directly proportional to motion
displacement. By analyzing these variations, different gestures
can be effectively distinguished.

B. Problem Definition

ViFi is designed to address the challenge of SFDA for
WiFi-based gesture recognition. We first define the notations
used throughout this work. Let Dg denote the source dataset,
consisting of pairs {Xg,Ys}, where Xg € Xg represents
the preprocessed CSI data and Yg € )Yg denotes the corre-
sponding ground truth gesture labels. The target dataset, Dr,
comprises only unlabeled CSI measurements {Xr}, where
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Fig. 1. The system framework of ViFi.

X7 € Xp. The corresponding gesture labels Yy € Yr are
reserved solely for evaluation purposes.

CSI data typically exhibits a large volume and may contain
sensitive information. Therefore, when deploying a WiFi-
based gesture recognition system in a new environment, using
Dg to facilitate the adaptation process would not only raise
privacy concerns but also impose significant computational
and storage demands. ViFi aims to enable a WiFi gesture
recognition system to adapt to new domains and be deployed
using only {Xr}, without requiring access to the Dg.

III. METHODS

A. System Overview

The overview of SFDA is illustrated in Fig. 1, which
comprises the following components: data collection and pro-
cessing, source domain training and target domain adaptation.

Data Collection and Processing: The transmitter contin-
uously emits WiFi signals while the receiver recive it and
extract the CSI. The acquired CSI data inevitably contains
substantial noise, which degrades recognition accuracy. Thus,
we first employ the CSI ratio method [17] to denoise the sig-
nals and extract clean amplitude and phase information. After
obtaining relatively clean CSI signals, we apply the Short-
Time Fourier Transform (STFT) to extract Doppler Frequency
Shift (DFS) in the frequency domain while retaining phase
information in the time domain. By vertically concatenating
the visual representations of DFS and phase, we generate
time-frequency composite images that simultaneously cap-
tures spectral and temporal characteristics. These images are
then used for subsequent modules.

Source Domain Training: In the source domain training
phase, ViFi aims to establish a hierarchical sensing structure
that separates low-level perceptual features from high-level
semantic representations. First, a perceptual encoder combined
with a classifier is pre-trained to extract signal-level features
from inputs. Then, the perceptual encoder is frozen to preserve
a consistent sensing viewpoint, and a LSTM-based semantic
encoder is optimized through a masked reconstruction task,
which forces the semantic network to capture meaningful
gesture-related temporal dependencies. This two-stage training



ensures robust feature learning while maintaining a clean
separation between perception and semantics.

Target Domain Adaptation: During deployment in a new
environment, ViFi performs source-free domain adaptation
without accessing the source data. The semantic encoder and
classifier, pre-trained on the source domain, remain fixed to
anchor the learned gesture semantics. Only the perceptual
encoder is fine-tuned using unlabeled target domain CSI
data. To guide the adaptation, masked reconstruction is again
employed, enforcing consistency between the adapted percep-
tual features and the frozen semantic representations. This
design enables the model to align domain-specific sensing
variations while preserving the temporal semantic structure,
thus achieving robust cross-domain adaptation.

B. Data Collection and Processing

In ideal scenarios, uncontaminated signal measurements
could be utilized directly without additional preprocessing.
However, practical implementations must account for inherent
signal distortions caused by carrier frequency offset, sam-
pling frequency offset, and packet detection delays. These
impairments inevitably introduce additive noise e 7% to the
acquired CSI, significantly degrading its reliability. Formally,
the observed noisy CSI measurement can be modeled as [18]:
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Random noise significantly corrupts CSI phase extraction
accuracy. Since all antennas on the network interface card
share the same RF oscillator, the phase offset e~ 7% remains
consistent across all subcarriers. To effectively suppress this
noise, we adopt the CSI-ratio method, formulated as [19]:
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where H;(f,t) and Hy(f,t) are the CSI of two nearby anten-
nas. And Ad can be regarded as a constant because H1(f,t)
and Hs(f,t) are close to each other. The transformation in (4),
comprising scaling and rotation operations on the phase shift
—jon ) . . .

e >, is trend-preserving in the complex domain. This
property enables simultaneous noise suppression and gesture
information retention.

To further mitigate error propagation caused by parameter
Ad, we introduce a proportional coefficient p for optimal
antenna pair selection, formulated as:

I
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where var and mean denote the variance and mean value of
amplitude readings for the k-th antenna of the i-th subcarrier.
Since CSI with larger variance typically exhibit higher sen-
sitivity to motion, while those with greater amplitude often
contain stronger static path components, we strategically select
the antenna with the highest and lowest py, values as H1(f,t)
and Hs(f,t). This selection criterion effectively minimizes the
impact of Ad on Hy(f,t) while maintaining optimal motion
detection capability.

By applying the CSI-ratio method combined with our
antenna selection strategy, we first obtain denoised phase
information. This processed data is then transformed into
DFES through STFT. To enhance visual clarity and removing
background information, we employ the CSI visualization
techniques in [3] to convert the DFS into heatmap images.
Finally, we vertically concatenate DFS and denoised phase
images to generate a composite DFS-phase diagram sharing a
unified timeline, which serves as the input X for subsequent
analysis.

C. Source Domain Training

In the source domain training phase, ViFi adopts a two-
stage hierarchical learning strategy to separate low-level per-
ceptual features from high-level semantic representations.
Specifically, ViFi first anchor the perceptual encoder to extract
reliable low-level representations and then train the semantic
encoder to model temporal relations through a masked signal
reconstruction task. We first illustrate our masking approach
here as the preliminary knowledge. Given an input X €
RZXW " where H and W represent the time and frequency
dimensions respectively, we first divide the image into N
vertical blocks of equal width along the time dimension.

The masking process is formally defined as:

X’(M){O’ M (6)
X(i,5), otherwise
where M denotes the set of randomly selected vertical blocks
to be masked, and (7, j) represents the pixel coordinates, and
we use X’ denote the masked input.

In the pre-training phase, a perceptual encoder py : Xg —
Fs combined with a gesture classifier cg : Fg — Vg is trained
to extract stable and discriminative signal-level features from
X by using cross-entropy loss:

M
LY = —B(xs.veops | Y 1[Ys = m]loga(co(ps(Xs)))

m=1

(N

where M denotes the number of gesture classes, o(-) repre-
sents the softmax function, and T[-] is the indicator function.
After achieving satisfactory classification performance, the
perceptual encoder is frozen to preserve the learned stable
sensing viewpoint. Subsequently, a semantic encoder s,
based on a LSTM network, is trained to model the temporal
relationships embedded within the feature sequences by using
the masked reconstruction task. This task aims to reconstruct
pe(Xs) form p,(X%) to encourages the s, to capture robust,



gesture-relevant temporal dependencies, enhancing its gener-
alization capability across domains.

The sy, is optimized by minimizing the feature-space mean
squared error:

L3eon = Exsmns [IPe(Xs) = sp(ps(X6)I3] 8

Notably, the reconstruction loss £, exclusively con-

strains the semantic network s,,, while the classification loss
Efls only applies to the perceptual network pg and classifier
cg. This decoupled optimization strategy yields two key ad-
vantages: (1) During domain adaptation, the feature alignment
can be performed separately at different levels, preventing
simultaneous alignment of high-level and low-level features
that may cause semantic deviation; (2) The perceptual network
maintains stable feature extraction capabilities unaffected by
reconstruction errors, whereas the semantic network focuses
solely on temporal relationship modeling. Finally, This two-
stage training procedure establishes a clean separation be-
tween perception and semantics, ensuring that the subsequent
domain adaptation can focus on aligning only the perceptual
sensing variations without disrupting the gesture semantics.

D. Target Domain Adaptation

During deployment in unseen target environments, ViFi per-
forms SFDA, relying solely on the pre-trained source model
in Section III-C without accessing the source dataset. In this
phase, the s, and cy are kept frozen, preserving the learned
temporal semantic structures from the source domain. Only
the py is fine-tuned to adapt to domain-specific variations
present in the target CSI data.

Specifically, masked {X’.} are passed through the py and
frozened sy, and a feature reconstruction loss is computed
between the reconstructed features and the original perceptual
outputs:

L apt = Exrmr [Ipe(X1) = sy (0o (XT))I3] ()

The frozen semantic network s, serves as an anchor
to maintain temporal sementaic constraints, while only the
perceptual network pg undergoes optimization. This selective
adaptation forces target features to conform to the source
domain’s reconstruction criteria, achieving implicit perceptual
viewpoint matching, and ensures stable perceptual transforma-
tion by preventing semantic deviation caused by simultaneous
alignment of multiple levels. In addition, a pseudo-labeling
mechanism is adopted to provide a soft supervision signal for
the classifier on unlabeled target data. The overall adaptation
objective combines temporal reconstruction consistency and
classification alignment:

Liotat = Lagaps + AExpnn, [—10g co(§r|pe(X1))]  (10)

where A\ regulates the relative importance weight between
perceptual-level temporal consistency and temporal semantic-
level alignment, and ¢ denotes pseudo-labels generated by
the fixed source classifier.

Notably, the second term in (10) offers flexible implemen-
tation options: while we employ pseudo-labeling here, any

established SFDA technique (e.g., entropy minimization or
prototype matching) can be alternatively applied, provided it
operates solely on the perceptual network’s output features.
This approach ensures stable feature transformation while pre-
venting semantic deviation caused by simultaneous alignment
of multiple levels.

IV. EVALUATIONS
A. Datasets

The performance evaluation employs the Widar3.0 [7]
containing CSI measurements collected from commercial Wi-
Fi devices in multiple indoor environments. Our experiments
primarily utilize data from Environment 1 (a classroom)
involving nine users performing six distinct gestures, with
each gesture repeated five times across five orientations and
five spatial positions, and additionally include one user’s data
from Environment 2 (a hall) for cross-environment evaluation.
The data collection employed six transceiver pairs, while
single-antenna experiments consistently used Receiver 2 as
the default configuration similar to Wi-learner [12].

To systematically evaluate cross-domain performance, we
examine five key domain factors: location changes, orientation
differences, environmental shifts, user variations and antenna
pair configurations. The evaluation follows a structured pro-
tocol where for each domain factor being tested, we employ
80% of the data from one domain instance for adaptation
and reserve the remaining 20% for testing, while using data
from all other domain instances for training. This evaluation
methodology is consistently applied across all domain factors,
with results reported as average accuracy across all possible
held-out domain configurations.

B. Implementation Details

The experimental implementation involves MATLAB for
CSI data preprocessing and PyTorch for network construc-
tion. We employ a ResNetl8 pretrained on ImageNet as
the perceptual network and a LSTM as semantic network.
For unified cross-domain evaluation, all experiments share
identical hyperparameters: the source domain training uses
an initial learning rate of 1 x 10~3 with decay factor 0.1
every 10 epochs over 40 total epochs, while target domain
adaptation employs a lower initial rate of 1 x 10~ for 10
epochs. Both phases utilize a batch size of 64 and default
A = 1 for loss balancing. This configuration ensures consistent
comparison of cross-domain performance while maintaining
training stability.

C. Overall Performance

The overall performance of ViFi is presented in Table I and
Table II. These tables provide comparative results between
the ViFi framework and existing DA and DG methods on
the Widar3.0 dataset for both in-domain and cross-domain
recognition tasks. Evidently, our proposed ViFi framework
outperforms most baseline methods. Remarkably, ViFi consis-
tently achieves over 90% accuracy in all single-antenna cross-
domain experiments, demonstrating exceptional robustness



TABLE I
PERFORMANCE COMPARISON ON WIDAR3 DATASET USING 1 ANTENNA PAIR

Accuracy Across Different Scenarios (%)

Methods
In-Domain  Cross-Loc ~ Cross-Ori ~ Cross-Env ~ Cross-User ~ Cross-Ant

SelfReg [20] - 76.71 86.67 39.11 53.10 -
WiSGP [21] - 78.49 88.46 43.17 56.77 -
WiSR [9] - 77.51 88.80 42.52 55.18 -
Wi-Learner [12] 93.20 91.40 86.50 74.20 89.40 94.40
WiOpen [4] - 86.40 77.67 84.44 82.71 -
UniFi" [6] 97.50 92.50 92.00 87.50 - -
ViFi 98.67 97.78 93.74 98.00 92.67 93.11

*Approximated from graphical data. Bold indicates best performance.

TABLE I
PERFORMANCE COMPARISON ON WIDAR3 DATASET USING 6 ANTENNA PAIRS

Accuracy Across Different Scenarios (%)

Methods
In-Domain  Cross-Loc ~ Cross-Ori ~ Cross-Env ~ Cross-User

EI [8] 97.40 73.33 79.70 63.50 -
Widar3.0 [7] 79.25 76.22 78.07 62.24 -
WiHF [22] 97.25 89.11 87.55 82.25 -
WIGRUNT [3] 98.66 92.07 91.92 85.19 -
PAC-CSI [23] 99.46 98.77 98.90 96.47 97.54
UniFi [6] 99.40 99.18 99.40 97.73 96.27
Wi-SFDAGR [13] - 97.30 97.17 95.52 -
MetaFormer [5] 100.00 99.00 100.00 81.00 94.67
ViFi 100.00 100.00 99.51 100.00 98.67

Bold indicates best performance.

to domain shifts. Specifically, when utilizing only a single
antenna pair for gesture recognition, ViFi achieves SOTA
performance in all configurations except for the cross-antenna
pair scenarios, where it trails Wi-Learner [12] by merely
1%. And in cross-environment experiments, ViFi demonstrates
more than twofold accuracy improvement over some compet-
ing methods.

In the six-antenna-pair configuration, where most methods
achieve high accuracy due to abundant available information,
our approach remains competitive with existing methods,
attaining 100% accuracy in some cross-domain experiments.
It is worth noting that several methods adopt similar baseline
architectures: WiSGP [21], WiSR [9] and Wiopen [4] all
employ ResNet as their backbone, while MetaFormer [5]
utilizes a more complex transformer architecture. However,
except for the cross-orientation case, none surpass ViFi in
overall performance. This may due to that jointly learning low-
level perceptual features and high-level semantic features from
CSI data through representation learning and data analysis
may inevitably suffer from environmental noise and CSI
sensitivity limitations, preventing networks from achieving
optimal performance.

D. Ablation Study

To further validate the impact of the viewpoint-hierarchical
strategy across various domains, we conducted ablation stud-
ies by removing the vertical masking method while main-
taining identical data processing pipelines, backbone, SFDA
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Fig. 2. The performance with/without the viewpoint-hierarchical strategy
using 1 antenna pair

methods and hyperparameters. As illustrated in Fig. 2 and
Fig. 3, the experimental results demonstrate that the ViFi
framework achieves an average accuracy improvement ex-
ceeding 15% compared to the baseline without viewpoint-
hierarchical strategy in single-antenna configurations. Notably,
the accuracy gains reach nearly 30% for cross-orientation and
cross-user tasks. This significant performance gap stems from
two inherent challenges: severe projection distortion of identi-
cal gestures when viewed from different orientations, and user-
specific motion patterns for the same gesture category. These
factors make these cross-domain tasks particularly challenging
for perceptual networks alone, underscoring the necessity of
incorporating temporal semantic information. Although the
performance difference diminishes in multi-antenna scenarios



T T
‘w/o viewpoint-hierarchical
I ViFi
100 - q
. 80f B
s
>
s 60 i
=l
=
1>
<
< 40 J
20 b
0 I I I I
Cross-Loc Cross-Ori Cross-Env Cross-User
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(with similar trends observed), the results collectively indicate
that losing semantic understanding critically degrades gesture
recognition performance in complex tasks. The ablation stud-
ies confirm that explicit modeling of viewpoint hierarchies is
essential for robust cross-domain adaptation.

V. CONCLUSION AND FUTURE WORK

This paper presents ViFi, a novel viewpoint-hierarchical
source-free domain adaptation (SFDA) framework designed
for cross-domain WiFi-based gesture recognition. ViFi decou-
ples perceptual sensing and semantic modeling by anchoring a
stable perceptual encoder and learning robust temporal seman-
tics through masked signal reconstruction, thereby addressing
the challenges of signal noise sensitivity and semantic drift
inherent in conventional methods. During deployment, ViFi
enables efficient adaptation by fine-tuning only the perceptual
encoder on unlabeled target data while preserving the learned
semantic structures, achieving robust performance without
accessing source domain data. Extensive experiments on the
Widar3.0 dataset demonstrate that ViFi achieves consistent
improvements across multiple domain shifts, surpassing state-
of-the-art methods by over 15% on average and up to 30% in
challenging cross-orientation and cross-user scenarios. Future
work will explore extending ViFi to dynamic and continu-
ously evolving environments, incorporating online adaptation
mechanisms, and further reducing the adaptation overhead to
enhance the practicality and scalability of WiFi-based human
sensing systems.
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